48 research outputs found

    Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements

    Get PDF
    The approximation of the time-dependent Oseen problem using inf-sup stable mixed finite elements in a Galerkin method with grad-div stabilization is studied. The main goal is to prove that adding a grad-div stabilization term to the Galerkin approximation has a stabilizing effect for small viscosity. Both the continuous-in-time and the fully discrete case (backward Euler method, the two-step BDF, and Crank--Nicolson schemes) are analyzed. In fact, error bounds are obtained that do not depend on the inverse of the viscosity in the case where the solution is sufficiently smooth. The bounds for the divergence of the velocity as well as for the pressure are optimal. The analysis is based on the use of a specific Stokes projection. Numerical studies support the analytical results

    Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization

    Get PDF
    This paper studies fully discrete approximations to the evolutionary Navier{ Stokes equations by means of inf-sup stable H1-conforming mixed nite elements with a grad-div type stabilization and the Euler incremental projection method in time. We get error bounds where the constants do not depend on negative powers of the viscosity. We get the optimal rate of convergence in time of the projection method. For the spatial error we get a bound O(hk) for the L2 error of the velocity, k being the degree of the polynomials in the velocity approximation. We prove numerically that this bound is sharp for this method.MINECO grant MTM2016-78995-P (AEI)Junta de Castilla y LeĂłn grant VA024P17Junta de Castilla y LeĂłn grant VA105G18MINECO grant MTM2015-65608-

    A local projection stabilization/continuous Galerkin--Petrov method for incompressible flow problems

    Get PDF
    The local projection stabilization (LPS) method in space is consid-ered to approximate the evolutionary Oseen equations. Optimal error bounds independent of the viscosity parameter are obtained in the continuous-in-time case for the approximations of both velocity and pressure. In addition, the fully discrete case in combination with higher order continuous Galerkin--Petrov (cGP) methods is studied. Error estimates of order k + 1 are proved, where k denotes the polynomial degree in time, assuming that the convective term is time-independent. Numerical results show that the predicted order is also achieved in the general case of time-dependent convective terms

    On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows

    Get PDF
    The kinetic energy of a flow is proportional to the square of the norm of the velocity. Given a sufficient regular velocity field and a velocity finite element space with polynomials of degree , then the best approximation error in is of order . In this survey, the available finite element error analysis for the velocity error in is reviewed, where is a final time. Since in practice the case of small viscosity coefficients or dominant convection is of particular interest, which may result in turbulent flows, robust error estimates are considered, i.e., estimates where the constant in the error bound does not depend on inverse powers of the viscosity coefficient. Methods for which robust estimates can be derived enable stable flow simulations for small viscosity coefficients on comparatively coarse grids, which is often the situation encountered in practice. To introduce stabilization techniques for the convection-dominated regime and tools used in the error analysis, evolutionary linear convection–diffusion equations are studied at the beginning. The main part of this survey considers robust finite element methods for the incompressible Navier–Stokes equations of order , , and for the velocity error in . All these methods are discussed in detail. In particular, a sketch of the proof for the error bound is given that explains the estimate of important terms which determine finally the order of convergence. Among them, there are methods for inf–sup stable pairs of finite element spaces as well as for pressure-stabilized discretizations. Numerical studies support the analytic results for several of these methods. In addition, methods are surveyed that behave in a robust way but for which only a non-robust error analysis is available. The conclusion of this survey is that the problem of whether or not there is a robust method with optimal convergence order for the kinetic energy is still open

    Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization

    Full text link
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Scientific Computing. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10915-019-00980-9This paper studies fully discrete approximations to the evolutionary Navier–Stokes equations by means of inf-sup stable H1-conforming mixed finite elements with a grad-div type stabilization and the Euler incremental projection method in time. We get error bounds where the constants do not depend on negative powers of the viscosity. We get the optimal rate of convergence in time of the projection method. For the spatial error we get a bound O(hk) for the L2 error of the velocity, k being the degree of the polynomials in the velocity approximation. We prove numerically that this bound is sharp for this methodInstituto de InvestigaciĂłn en Matemáticas (IMUVA), Universidad de Valladolid, Spain. Research supported under grants MTM2016-78995-P (AEI/MINECO, ES) and VA024P17, VA105G18 (Junta de Castilla y LeĂłn, ES) cofinanced by FEDER funds ([email protected]) Departamento de Matemática Aplicada II, Universidad de Sevilla, Sevilla, Spain. Research supported by Spanish MINECO under grant MTM2015-65608-P ([email protected]) Departamento de Matemáticas, Universidad AutĂłnoma de Madrid. Spain Research supported under grants MTM2016-78995-P (AEI/MINECO, ES) and VA024P17 (Junta de Castilla y LeĂłn, ES) co financed by FEDER funds ([email protected]

    A Pressure-Robust Discretization of Oseen's Equation Using Stabilization in the Vorticity Equation

    Get PDF
    Discretization of Navier--Stokes equations using pressure-robust finite element methods is considered for the high Reynolds number regime. To counter oscillations due to dominating convection we add a stabilization based on a bulk term in the form of a residual-based least squares stabilization of the vorticity equation supplemented by a penalty term on (certain components of) the gradient jump over the elements faces. Since the stabilization is based on the vorticity equation, it is independent of the pressure gradients, which makes it pressure-robust. Thus, we prove pressure-independent error estimates in the linearized case, known as Oseen's problem. In fact, we prove an O(hk+12)O(h^{k+\frac12}) error estimate in the L2L^2-norm that is known to be the best that can be expected for this type of problem. Numerical examples are provided that, in addition to confirming the theoretical results, show that the present method compares favorably to the classical residual-based streamline upwind Petrov--Galerkin stabilization

    Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method, Part II: A linear scheme

    Get PDF
    This is the second part of our error analysis of the stabilized Lagrange-Galerkin scheme applied to the Oseen-type Peterlin viscoelastic model. Our scheme is a combination of the method of characteristics and Brezzi-Pitk\"aranta's stabilization method for the conforming linear elements, which leads to an efficient computation with a small number of degrees of freedom especially in three space dimensions. In this paper, Part II, we apply a semi-implicit time discretization which yields the linear scheme. We concentrate on the diffusive viscoelastic model, i.e. in the constitutive equation for time evolution of the conformation tensor a diffusive effect is included. Under mild stability conditions we obtain error estimates with the optimal convergence order for the velocity, pressure and conformation tensor in two and three space dimensions. The theoretical convergence orders are confirmed by numerical experiments.Comment: See arXiv:1603.01339 for Part I: a nonlinear schem

    Two-Grid Mixed Finite-Element Approximations to the Navier–Stokes Equations Based on a Newton-Type Step

    Full text link
    This is post-peer-review, pre-copyedit version of an article published in Journal of Scientific Computing. The final of authenticated version is available online at: https://doi.org/10.1007/s10915-017-0447-2A two-grid scheme to approximate the evolutionary Navier–Stokes equations is introduced and analyzed. A standard mixed finite element approximation is first obtained over a coarse mesh of size H at any positive time T>0 . Then, the approximation is postprocessed by means of solving a steady problem based on one step of a Newton iteration over a finer mesh of size h<H . The method increases the rate of convergence of the standard Galerkin method in one unit in terms of H and equals the rate of convergence of the standard Galerkin method over the fine mesh h. However, the computational cost is essentially the cost of approaching the Navier–Stokes equations with the plain Galerkin method over the coarse mesh of size H since the cost of solving one single steady problem is negligible compared with the cost of computing the Galerkin approximation over the full time interval (0, T]. For the analysis we take into account the loss of regularity at initial time of the solution of the Navier–Stokes equations in the absence of nonlocal compatibility conditions. Some numerical experiments are shownJ. Novo: Research supported by Spanish MINECO under grants MTM2013-42538-P (MINECO, ES) and MTM2016-78995-P (AEI/FEDER, UE
    corecore