20 research outputs found

    Comparative Analysis of Segment Anything Model and U-Net for Breast Tumor Detection in Ultrasound and Mammography Images

    Full text link
    In this study, the main objective is to develop an algorithm capable of identifying and delineating tumor regions in breast ultrasound (BUS) and mammographic images. The technique employs two advanced deep learning architectures, namely U-Net and pretrained SAM, for tumor segmentation. The U-Net model is specifically designed for medical image segmentation and leverages its deep convolutional neural network framework to extract meaningful features from input images. On the other hand, the pretrained SAM architecture incorporates a mechanism to capture spatial dependencies and generate segmentation results. Evaluation is conducted on a diverse dataset containing annotated tumor regions in BUS and mammographic images, covering both benign and malignant tumors. This dataset enables a comprehensive assessment of the algorithm's performance across different tumor types. Results demonstrate that the U-Net model outperforms the pretrained SAM architecture in accurately identifying and segmenting tumor regions in both BUS and mammographic images. The U-Net exhibits superior performance in challenging cases involving irregular shapes, indistinct boundaries, and high tumor heterogeneity. In contrast, the pretrained SAM architecture exhibits limitations in accurately identifying tumor areas, particularly for malignant tumors and objects with weak boundaries or complex shapes. These findings highlight the importance of selecting appropriate deep learning architectures tailored for medical image segmentation. The U-Net model showcases its potential as a robust and accurate tool for tumor detection, while the pretrained SAM architecture suggests the need for further improvements to enhance segmentation performance

    Fast catheter segmentation and tracking based on x-ray fluoroscopic and echocardiographic modalities for catheter-based cardiac minimally invasive interventions

    Get PDF
    X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities that are widely used in cardiac catheterization. For these modalities, a fast, accurate and stable algorithm for the detection and tracking of catheters is required to allow clinicians to observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the standard modality in catheter ablation interventions. However, it lacks the ability to visualize soft tissue and uses harmful radiation. US does not have these limitations but often contains acoustic artifacts and has a small field of view. These make the detection and tracking of the catheter in US very challenging. The first contribution in this thesis is a framework which combines Kalman filter and discrete optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter is used to identify the whole catheter from a single point detected on the catheter in the first frame of a sequence of x-ray images. An energy-based formulation is developed that can be used to track the catheters in the following frames. We also propose a discrete optimization for minimizing the energy function in each frame of the X-ray image sequence. Our approach is robust to tangential motion of the catheter and combines the tubular and salient feature measurements into a single robust and efficient framework. The second contribution is an algorithm for catheter extraction in 3D ultrasound images based on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of the catheter in X-ray images. The search space for the catheter extraction in the ultrasound images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved surface corresponds to the back-projection of the extracted catheter from the X-ray image to the ultrasound volume. Blob-like features are detected in the US images and organized in a graphical model. The extracted catheter is modelled as the optimal path in this graphical model. Both contributions allow the use of ultrasound imaging for the improved visualization of soft tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of X-ray exposure has not been reduced. The final contribution in this thesis is a system that can track the catheter in ultrasound volumes automatically without the need for X-ray imaging during the tracking. Instead X-ray imaging is only required for the system initialization and for recovery from tracking failures. This allows a significant reduction in the amount of X-ray exposure for patient and clinicians.Open Acces

    RECURSIVE PATH FOLLOWING IN LOG POLAR SPACE FOR AUTONOMOUS LEAF CONTOUR EXTRACTION

    Get PDF
    Use of image segmentation has caused agriculture advancement in species identification, chlorophyll measurements, plant growth and disease detection. Most methods require some level of manual segmentation as autonomous image segmentation is a difficult task. Methods with the highest segmentation precision use a priori knowledge obtained from user input which is time consuming and subjective. This research focuses on providing current segmentation methods a pre-processing model that autonomously extracts an internal and external contour of the leaf. The model converts the uniform Cartesian images to non-uniformly sampled images in log polar space. A recursive path following algorithm was designed to map out the leaf’s edge boundary. This boundary is shifted inward and outward to create two contours; one that lies within the foreground and one within the background. The image database consists of 918 leaves from multiple plants and different background mediums. The model successfully created contours for 714 of the leaves. Results of the autonomously created contours being used in lieu of user-input contours for a current segmentation algorithm are presented

    2D and 3D segmentation of medical images.

    Get PDF
    "Cardiovascular disease is one of the leading causes of the morbidity and mortality in the western world today. Many different imaging modalities are in place today to diagnose and investigate cardiovascular diseases. Each of these, however, has strengths and weaknesses. There are different forms of noise and artifacts in each image modality that combine to make the field of medical image analysis both important and challenging. The aim of this thesis is develop a reliable method for segmentation of vessel structures in medical imaging, combining the expert knowledge of the user in such a way as to maintain efficiency whilst overcoming the inherent noise and artifacts present in the images. We present results from 2D segmentation techniques using different methodologies, before developing 3D techniques for segmenting vessel shape from a series of images. The main drive of the work involves the investigation of medical images obtained using catheter based techniques, namely Intra Vascular Ultrasound (IVUS) and Optical Coherence Tomography (OCT). We will present a robust segmentation paradigm, combining both edge and region information to segment the media-adventitia, and lumenal borders in those modalities respectively. By using a semi-interactive method that utilizes "soft" constraints, allowing imprecise user input which provides a balance between using the user's expert knowledge and efficiency. In the later part of the work, we develop automatic methods for segmenting the walls of lymph vessels. These methods are employed on sequential images in order to obtain data to reconstruct the vessel walls in the region of the lymph valves. We investigated methods to segment the vessel walls both individually and simultaneously, and compared the results both quantitatively and qualitatively in order obtain the most appropriate for the 3D reconstruction of the vessel wall. Lastly, we adapt the semi-interactive method used on vessels earlier into 3D to help segment out the lymph valve. This involved the user interactive method to provide guidance to help segment the boundary of the lymph vessel, then we apply a minimal surface segmentation methodology to provide segmentation of the valve.

    A Comparative Study of Vehicle Platoon with Limited Output Information in Directed Topologies

    Get PDF
    This paper aims to study and compare the effect of limited-output information in various directed topology to the performance of vehicle platoon. Two distributed controllers based on limited-output information will be compared to cooperative state variable feedback control which designed based on full-state information. The comparison will be conducted for four common directed topologies in the vehicle platoon application. Simulation analysis is performed in three scenarios, namely under normal operations, when the leader moves with constant acceleration and when the platoon is subjected to constant communication delay. Performances comparison will be observed from inter-vehicular distance response in each follower and the results will be displayed with respect to the follower vehicle index in the platoon configuration. Finally, the behavior of each control scheme in various topologies will be summarized

    Development of medical image/video segmentation via deep learning models

    Get PDF
    Image segmentation has a critical role in medical diagnosis systems as it is mostly the initial stage, and any error would be propagated in the subsequent analysis. Certain challenges, including Irregular border, low quality of images, small Region of Interest (RoI) and complex structures such as overlapping cells in images impede the improvement of medical image analysis. Deep learning-based algorithms have recently brought superior achievements in computer vision. However, there are limitations to their application in the medical domain including data scarcity, and lack of pretrained models on medical data. This research addresses the issues that hinder the progress of deep learning methods on medical data. Firstly, the effectiveness of transfer learning from a pretrained model with dissimilar data is investigated. The model is improved by integrating feature maps from the frequency domain into the spatial feature maps of Convolutional Neural Network (CNN). Training from scratch and the challenges ahead were explored as well. The proposed model shows higher performance compared to state-of-the-art methods by %2:2 and %17 in Jaccard index for tasks of lesion segmentation and dermoscopic feature segmentation respectively. Furthermore, the proposed model benefits from significant improvement for noisy images without preprocessing stage. Early stopping and drop out layers were considered to tackle the overfitting and network hyper-parameters such as different learning rate, weight initialization, kernel size, stride and normalization techniques were investigated to enhance learning performance. In order to expand the research into video segmentation, specifically left ventricular segmentation, U-net deep architecture was modified. The small RoI and confusion between overlapped organs are big challenges in MRI segmentation. The consistent motion of LV and the continuity of neighbor frames are important features that were used in the proposed architecture. High level features including optical flow and contourlet were used to add temporal information and the RoI module to the Unet model. The proposed model surpassed the results of original Unet model for LV segmentation by a %7 increment in Jaccard index

    Radiomics for Response Assessment after Stereotactic Radiotherapy for Lung Cancer

    Get PDF
    Stereotactic ablative radiotherapy (SABR) is a guideline-specified treatment option for patients with early stage non-small cell lung cancer. After treatment, patients are followed up regularly with computed tomography (CT) imaging to determine treatment response. However, benign radiographic changes to the lung known as radiation-induced lung injury (RILI) frequently occur. Due to the large doses delivered with SABR, these changes can mimic the appearance of a recurring tumour and confound response assessment. The objective of this work was to evaluate the accuracy of radiomics, for prediction of eventual local recurrence based on CT images acquired within 6 months of treatment. A semi-automatic decision support system was developed to segment and sample regions of common post-SABR changes, extract radiomic features and classify images as local recurrence or benign injury. Physician ability to detect timely local recurrence was also measured on CT imaging, and compared with that of the radiomics tool. Within 6 months post-SABR, physicians assessed the majority of images as no recurrence and had an overall lower accuracy compared to the radiomics system. These results suggest that radiomics can detect early changes associated with local recurrence that are not typically considered by physicians. These appearances detected by radiomics may be early indicators of the promotion and progression to local recurrence. This has the potential to lead to a clinically useful computer-aided decision support tool based on routinely acquired CT imaging, which could lead to earlier salvage opportunities for patients with recurrence and fewer invasive investigations of patients with only benign injury

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews
    corecore