75 research outputs found

    A module minimization approach to Gabidulin decoding via interpolation

    Get PDF
    We focus on iterative interpolation-based decoding of Gabidulin codes and present an algorithm that computes a minimal basis for an interpolation module. We extend existing results for Reed-Solomon codes in showing that this minimal basis gives rise to a parametrization of elements in the module that lead to all Gabidulin decoding solutions that are at a fixed distance from the received word. Our module-theoretic approach strengthens the link between Gabidulin decoding and Reed-Solomon decoding, thus providing a basis for further work into Gabidulin list decoding

    Computing necessary integrability conditions for planar parametrized homogeneous potentials

    Get PDF
    Let V\in\mathbb{Q}(i)(\a_1,\dots,\a_n)(\q_1,\q_2) be a rationally parametrized planar homogeneous potential of homogeneity degree k2,0,2k\neq -2, 0, 2. We design an algorithm that computes polynomial \emph{necessary} conditions on the parameters (\a_1,\dots,\a_n) such that the dynamical system associated to the potential VV is integrable. These conditions originate from those of the Morales-Ramis-Sim\'o integrability criterion near all Darboux points. The implementation of the algorithm allows to treat applications that were out of reach before, for instance concerning the non-integrability of polynomial potentials up to degree 99. Another striking application is the first complete proof of the non-integrability of the \emph{collinear three body problem}.Comment: ISSAC'14 - International Symposium on Symbolic and Algebraic Computation (2014

    Polynomial time attack on high rate random alternant codes

    Full text link
    A long standing open question is whether the distinguisher of high rate alternant codes or Goppa codes \cite{FGOPT11} can be turned into an algorithm recovering the algebraic structure of such codes from the mere knowledge of an arbitrary generator matrix of it. This would allow to break the McEliece scheme as soon as the code rate is large enough and would break all instances of the CFS signature scheme. We give for the first time a positive answer for this problem when the code is {\em a generic alternant code} and when the code field size qq is small : q{2,3}q \in \{2,3\} and for {\em all} regime of other parameters for which the aforementioned distinguisher works. This breakthrough has been obtained by two different ingredients : (i) a way of using code shortening and the component-wise product of codes to derive from the original alternant code a sequence of alternant codes of decreasing degree up to getting an alternant code of degree 33 (with a multiplier and support related to those of the original alternant code); (ii) an original Gr\"obner basis approach which takes into account the non standard constraints on the multiplier and support of an alternant code which recovers in polynomial time the relevant algebraic structure of an alternant code of degree 33 from the mere knowledge of a basis for it

    Efficient Decoding of Gabidulin Codes over Galois Rings

    Full text link
    This paper presents the first decoding algorithm for Gabidulin codes over Galois rings with provable quadratic complexity. The new method consists of two steps: (1) solving a syndrome-based key equation to obtain the annihilator polynomial of the error and therefore the column space of the error, (2) solving a key equation based on the received word in order to reconstruct the error vector. This two-step approach became necessary since standard solutions as the Euclidean algorithm do not properly work over rings

    The Legendre Symbol and the Modulo-2 Operator in Symmetric Schemes over (F_p)^n

    Get PDF
    Motivated by modern cryptographic use cases such as multi-party computation (MPC), homomorphic encryption (HE), and zero-knowledge (ZK) protocols, several symmetric schemes that are efficient in these scenarios have recently been proposed in the literature. Some of these schemes are instantiated with low-degree nonlinear functions, for example low-degree power maps (e.g., MiMC, HadesMiMC, Poseidon) or the Toffoli gate (e.g., Ciminion). Others (e.g., Rescue, Vision, Grendel) are instead instantiated via high-degree functions which are easy to evaluate in the target application. A recent example for the latter case is the hash function Grendel, whose nonlinear layer is constructed using the Legendre symbol. In this paper, we analyze high-degree functions such as the Legendre symbol or the modulo-2 operation as building blocks for the nonlinear layer of a cryptographic scheme over (F_p)^n. Our focus regards the security analysis rather than the efficiency in the mentioned use cases. For this purpose, we present several new invertible functions that make use of the Legendre symbol or of the modulo-2 operation. Even though these functions often provide strong statistical properties and ensure a high degree after a few rounds, the main problem regards their small number of possible outputs, that is, only three for the Legendre symbol and only two for the modulo-2 operation. By fixing them, it is possible to reduce the overall degree of the function significantly. We exploit this behavior by describing the first preimage attack on full Grendel, and we verify it in practice

    Chaghri --- an FHE-friendly Block Cipher

    Get PDF
    The Recent progress in practical applications of secure computation protocols has also attracted attention to the symmetric-key primitives underlying them. Whereas traditional ciphers have evolved to be efficient with respect to certain performance metrics, advanced cryptographic protocols call for a different focus. The so called arithmetic complexity is viewed through the number and layout of non-linear operations in the circuit implemented by the protocol. Symmetric-key algorithms that are optimized with respect to this metric are said to be algebraic ciphers. Previous work targeting ZK and MPC protocols delivered great improvement in the performance of these applications both in lab and in practical use. Interestingly, despite its apparent benefits to privacy-aware cloud computing, algebraic ciphers targeting FHE did not attract similar attention. In this paper we present Chaghri, an FHE-friendly block cipher enabling efficient transciphering in BGV-like schemes. A complete Chaghri circuit can be implemented using only 16 multiplications, 32 Frobenius automorphisms and 32 rotations, all arranged in a depth-32 circuit. Our HElib implemention achieves a throughput of 0.26 seconds-per-bit which is 65% faster than AES in the same setting

    Topics on Reliable and Secure Communication using Rank-Metric and Classical Linear Codes

    Get PDF
    corecore