50 research outputs found

    A Hypergraph Dictatorship Test with Perfect Completeness

    Full text link
    A hypergraph dictatorship test is first introduced by Samorodnitsky and Trevisan and serves as a key component in their unique games based \PCP construction. Such a test has oracle access to a collection of functions and determines whether all the functions are the same dictatorship, or all their low degree influences are o(1).o(1). Their test makes q3q\geq3 queries and has amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}) but has an inherent loss of perfect completeness. In this paper we give an adaptive hypergraph dictatorship test that achieves both perfect completeness and amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}).Comment: Some minor correction

    Low-degree tests at large distances

    Full text link
    We define tests of boolean functions which distinguish between linear (or quadratic) polynomials, and functions which are very far, in an appropriate sense, from these polynomials. The tests have optimal or nearly optimal trade-offs between soundness and the number of queries. In particular, we show that functions with small Gowers uniformity norms behave ``randomly'' with respect to hypergraph linearity tests. A central step in our analysis of quadraticity tests is the proof of an inverse theorem for the third Gowers uniformity norm of boolean functions. The last result has also a coding theory application. It is possible to estimate efficiently the distance from the second-order Reed-Muller code on inputs lying far beyond its list-decoding radius

    Improved Hardness of Approximating Chromatic Number

    Full text link
    We prove that for sufficiently large K, it is NP-hard to color K-colorable graphs with less than 2^{K^{1/3}} colors. This improves the previous result of K versus K^{O(log K)} in Khot [14]

    The Gowers norm in the testing of Boolean functions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 65-68).A property tester is a fast, randomized algorithm that reads only a few entries of the input, and based on the values of these entries, it distinguishes whether the input has a certain property or is "different" from any input having this property. Furthermore, we say that a property tester has completeness c and soundness s if it accepts all inputs having the property with probability at least c and accepts "different" inputs with probability at most s + o(1). In this thesis we present two property testers for boolean functions on the boolean cube f0; 1gn. We summarize our contribution as follows. We present a new dictatorship test that determines whether the function is a dictator (of the form f(x) = xi for some coordinate i), or a function that is an "anti-dictator." Our test is "adaptive," makes q queries, has completeness 1, and soundness O(q3) 2??q. Previously, a dictatorship test that has soundness (q + 1) . 2-q is achieved by Samorodnitsky and Trevisan, but their test has completeness strictly less than 1. Furthermore, the previously best known dictatorship test from the PCP literature with completeness 1 has soundness ... . Our contribution lies in achieving perfect completeness and low sound- ness simultaneously. We consider properties of functions that are invariant under linear transformations of the boolean cube. Previous works, such as linearity testing and low-degree testing, have focused on linear properties.(cont.) The one exception is a test due to Green for "triangle freeness": a function f satisfies this property if f(x); f(y); f(x + y) do not all equal 1, for any pair x; y 2 f0; 1gn. We extend this test to a more systematic study and consider non-linear properties that are described by a single forbidden pattern. Specifically, let M denote an r by k matrix over f0; 1g. We say that a function f is M-free if there are no ~x = (x1,...,xk), where x1,...,xk 2 f0; 1gn such that f(x1),...,f(xk) = 1 and M~x = ~0. If M can be represented by an underlying graph, we can analyze a test that determines whether a function is M-free or \far" from one. Our test makes k queries, has completeness 1, and soundness bounded away from 1. The technique from our work leads to alternate proofs that some previously studied linear properties are testable, albeit with worse parameters. Our results, though quite different in terms of context, are connected by similar techniques. Our analysis of the algorithms relies on the machinery of the Gowers uniformity norm, a recent and powerful tool in additive combinatorics.by Victor Yen-Wen Chen.Ph.D

    Sampling-based proofs of almost-periodicity results and algorithmic applications

    Full text link
    We give new combinatorial proofs of known almost-periodicity results for sumsets of sets with small doubling in the spirit of Croot and Sisask, whose almost-periodicity lemma has had far-reaching implications in additive combinatorics. We provide an alternative (and L^p-norm free) point of view, which allows for proofs to easily be converted to probabilistic algorithms that decide membership in almost-periodic sumsets of dense subsets of F_2^n. As an application, we give a new algorithmic version of the quasipolynomial Bogolyubov-Ruzsa lemma recently proved by Sanders. Together with the results by the last two authors, this implies an algorithmic version of the quadratic Goldreich-Levin theorem in which the number of terms in the quadratic Fourier decomposition of a given function is quasipolynomial in the error parameter, compared with an exponential dependence previously proved by the authors. It also improves the running time of the algorithm to have quasipolynomial dependence instead of an exponential one. We also give an application to the problem of finding large subspaces in sumsets of dense sets. Green showed that the sumset of a dense subset of F_2^n contains a large subspace. Using Fourier analytic methods, Sanders proved that such a subspace must have dimension bounded below by a constant times the density times n. We provide an alternative (and L^p norm-free) proof of a comparable bound, which is analogous to a recent result of Croot, Laba and Sisask in the integers.Comment: 28 page

    Testing Linear-Invariant Non-Linear Properties

    Get PDF
    We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for "triangle freeness": a function f:\cube^{n}\to\cube satisfies this property if f(x),f(y),f(x+y)f(x),f(y),f(x+y) do not all equal 1, for any pair x,y\in\cube^{n}. Here we extend this test to a more systematic study of testing for linear-invariant non-linear properties. We consider properties that are described by a single forbidden pattern (and its linear transformations), i.e., a property is given by kk points v_{1},...,v_{k}\in\cube^{k} and f:\cube^{n}\to\cube satisfies the property that if for all linear maps L:\cube^{k}\to\cube^{n} it is the case that f(L(v1)),...,f(L(vk))f(L(v_{1})),...,f(L(v_{k})) do not all equal 1. We show that this property is testable if the underlying matroid specified by v1,...,vkv_{1},...,v_{k} is a graphic matroid. This extends Green's result to an infinite class of new properties. Our techniques extend those of Green and in particular we establish a link between the notion of "1-complexity linear systems" of Green and Tao, and graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the proceedings of STACS 200
    corecore