13,121 research outputs found

    PKI Interoperability: Still an Issue? A Solution in the X. 509 Realm

    Get PDF
    There exist many obstacles that slow the global adoption of public key infrastructure (PKI) technology. The PKI interoperability problem, being poorly understood, is one of the most confusing. In this paper, we clarify the PKI interoperability issue by exploring both the juridical and technical domains. We demonstrate the origin of the PKI interoperability problem by determining its root causes, the latter being legal, organizational and technical differences between countries, which mean that relying parties have no one to rely on. We explain how difficult it is to harmonize them. Finally, we propose to handle the interoperability problem from the trust management point of view, by introducing the role of a trust broker which is in charge of helping relying parties make informed decisions about X.509 certificates

    Managing the Ethical Dimensions of Brain-Computer Interfaces in eHealth: An SDLC-based Approach

    Get PDF
    A growing range of brain-computer interface (BCI) technologies is being employed for purposes of therapy and human augmentation. While much thought has been given to the ethical implications of such technologies at the ‘macro’ level of social policy and ‘micro’ level of individual users, little attention has been given to the unique ethical issues that arise during the process of incorporating BCIs into eHealth ecosystems. In this text a conceptual framework is developed that enables the operators of eHealth ecosystems to manage the ethical components of such processes in a more comprehensive and systematic way than has previously been possible. The framework’s first axis defines five ethical dimensions that must be successfully addressed by eHealth ecosystems: 1) beneficence; 2) consent; 3) privacy; 4) equity; and 5) liability. The second axis describes five stages of the systems development life cycle (SDLC) process whereby new technology is incorporated into an eHealth ecosystem: 1) analysis and planning; 2) design, development, and acquisition; 3) integration and activation; 4) operation and maintenance; and 5) disposal. Known ethical issues relating to the deployment of BCIs are mapped onto this matrix in order to demonstrate how it can be employed by the managers of eHealth ecosystems as a tool for fulfilling ethical requirements established by regulatory standards or stakeholders’ expectations. Beyond its immediate application in the case of BCIs, we suggest that this framework may also be utilized beneficially when incorporating other innovative forms of information and communications technology (ICT) into eHealth ecosystems

    New Hampshire University Research and Industry Plan: A Roadmap for Collaboration and Innovation

    Get PDF
    This University Research and Industry plan for New Hampshire is focused on accelerating innovation-led development in the state by partnering academia’s strengths with the state’s substantial base of existing and emerging advanced industries. These advanced industries are defined by their deep investment and connections to research and development and the high-quality jobs they generate across production, new product development and administrative positions involving skills in science, technology, engineering and math (STEM)

    Managing the Ethical Dimensions of Brain-Computer Interfaces in eHealth: An SDLC-based Approach

    Get PDF
    A growing range of brain-computer interface (BCI) technologies is being employed for purposes of therapy and human augmentation. While much thought has been given to the ethical implications of such technologies at the ‘macro’ level of social policy and ‘micro’ level of individual users, little attention has been given to the unique ethical issues that arise during the process of incorporating BCIs into eHealth ecosystems. In this text a conceptual framework is developed that enables the operators of eHealth ecosystems to manage the ethical components of such processes in a more comprehensive and systematic way than has previously been possible. The framework’s first axis defines five ethical dimensions that must be successfully addressed by eHealth ecosystems: 1) beneficence; 2) consent; 3) privacy; 4) equity; and 5) liability. The second axis describes five stages of the systems development life cycle (SDLC) process whereby new technology is incorporated into an eHealth ecosystem: 1) analysis and planning; 2) design, development, and acquisition; 3) integration and activation; 4) operation and maintenance; and 5) disposal. Known ethical issues relating to the deployment of BCIs are mapped onto this matrix in order to demonstrate how it can be employed by the managers of eHealth ecosystems as a tool for fulfilling ethical requirements established by regulatory standards or stakeholders’ expectations. Beyond its immediate application in the case of BCIs, we suggest that this framework may also be utilized beneficially when incorporating other innovative forms of information and communications technology (ICT) into eHealth ecosystems

    A case study in open source innovation: developing the Tidepool Platform for interoperability in type 1 diabetes management.

    Get PDF
    OBJECTIVE:Develop a device-agnostic cloud platform to host diabetes device data and catalyze an ecosystem of software innovation for type 1 diabetes (T1D) management. MATERIALS AND METHODS:An interdisciplinary team decided to establish a nonprofit company, Tidepool, and build open-source software. RESULTS:Through a user-centered design process, the authors created a software platform, the Tidepool Platform, to upload and host T1D device data in an integrated, device-agnostic fashion, as well as an application ("app"), Blip, to visualize the data. Tidepool's software utilizes the principles of modular components, modern web design including REST APIs and JavaScript, cloud computing, agile development methodology, and robust privacy and security. DISCUSSION:By consolidating the currently scattered and siloed T1D device data ecosystem into one open platform, Tidepool can improve access to the data and enable new possibilities and efficiencies in T1D clinical care and research. The Tidepool Platform decouples diabetes apps from diabetes devices, allowing software developers to build innovative apps without requiring them to design a unique back-end (e.g., database and security) or unique ways of ingesting device data. It allows people with T1D to choose to use any preferred app regardless of which device(s) they use. CONCLUSION:The authors believe that the Tidepool Platform can solve two current problems in the T1D device landscape: 1) limited access to T1D device data and 2) poor interoperability of data from different devices. If proven effective, Tidepool's open source, cloud model for health data interoperability is applicable to other healthcare use cases

    BIM and its impact upon project success outcomes from a Facilities Management perspective

    Get PDF
    The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A ”resistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area.The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A ”resistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area

    Blockchain For Food: Making Sense of Technology and the Impact on Biofortified Seeds

    Get PDF
    The global food system is under pressure and is in the early stages of a major transition towards more transparency, circularity, and personalisation. In the coming decades, there is an increasing need for more food production with fewer resources. Thus, increasing crop yields and nutritional value per crop is arguably an important factor in this global food transition. Biofortification can play an important role in feeding the world. Biofortified seeds create produce with increased nutritional values, mainly minerals and vitamins, while using the same or less resources as non-biofortified variants. However, a farmer cannot distinguish a biofortified seed from a regular seed. Due to the invisible nature of the enhanced seeds, counterfeit products are common, limiting wide-scale adoption of biofortified crops. Fraudulent seeds pose a major obstacle in the adoption of biofortified crops. A system that could guarantee the origin of the biofortified seeds is therefore required to ensure widespread adoption. This trust-ensuring immutable proof for the biofortified seeds, can be provided via blockchain technology
    • 

    corecore