95 research outputs found

    Modelling and performance analysis of mobile ad hoc networks

    Get PDF
    PhD ThesisMobile Ad hoc Networks (MANETs) are becoming very attractive and useful in many kinds of communication and networking applications. This is due to their efficiency, relatively low cost, and flexibility provided by their dynamic infrastructure. Performance evaluation of mobile ad hoc networks is needed to compare various architectures of the network for their performance, study the effect of varying certain network parameters and study the interaction between various parameters that characterise the network. It can help in the design and implementation of MANETs. It is to be noted that most of the research that studies the performance of MANETs were evaluated using discrete event simulation (DES) utilising a broad band of network simulators. The principle drawback of DES models is the time and resources needed to run such models for large realistic systems, especially when results with a high accuracy are desired. In addition, studying typical problems such as the deadlock and concurrency in MANETs using DES is hard because network simulators implement the network at a low abstraction level and cannot support specifications at higher levels. Due to the advantage of quick construction and numerical analysis, analytical modelling techniques, such as stochastic Petri nets and process algebra, have been used for performance analysis of communication systems. In addition, analytical modelling is a less costly and more efficient method. It generally provides the best insight into the effects of various parameters and their interactions. Hence, analytical modelling is the method of choice for a fast and cost effective evaluation of mobile ad hoc networks. To the best of our knowledge, there is no analytical study that analyses the performance of multi-hop ad hoc networks, where mobile nodes move according to a random mobility model, in terms of the end-to-end delay and throughput. This work ii presents a novel analytical framework developed using stochastic reward nets and mathematical modelling techniques for modelling and analysis of multi-hop ad hoc networks, based on the IEEE 802.11 DCF MAC protocol, where mobile nodes move according to the random waypoint mobility model. The proposed framework is used to analysis the performance of multi-hop ad hoc networks as a function of network parameters such as the transmission range, carrier sensing range, interference range, number of nodes, network area size, packet size, and packet generation rate. The proposed framework is organized into several models to break up the complexity of modelling the complete network and make it easier to analyse each model as required. This is based on the idea of decomposition and fixed point iteration of stochastic reward nets. The proposed framework consists of a mathematical model and four stochastic reward nets models; the path analysis model, data link layer model, network layer model and transport layer model. These models are arranged in a way similar to the layers of the OSI protocol stack model. The mathematical model is used to compute the expected number of hops between any source-destination pair; and the average number of carrier sensing, hidden, and interfering nodes. The path analysis model analyses the dynamic of paths in the network due to the node mobility in terms of the path connection availability and rate of failure and repair. The data link layer model describes the behaviour of the IEEE 802.11 DCF MAC protocol. The actions in the network layer are modelled by the network layer model. The transport layer model represents the behaviour of the transport layer protocols. The proposed models are validated using extensive simulations

    Advanced Protocols for Peer-to-Peer Data Transmission in Wireless Gigabit Networks

    Get PDF
    This thesis tackles problems on IEEE 802.11 MAC layer, network layer and application layer, to further push the performance of wireless P2P applications in a holistic way. It contributes to the better understanding and utilization of two major IEEE 802.11 MAC features, frame aggregation and block acknowledgement, to the design and implementation of opportunistic networks on off-the-shelf hardware and proposes a document exchange protocol, including document recommendation. First, this thesis contributes a measurement study of the A-MPDU frame aggregation behavior of IEEE 802.11n in a real-world, multi-hop, indoor mesh testbed. Furthermore, this thesis presents MPDU payload adaptation (MPA) to utilize A-MPDU subframes to increase the overall throughput under bad channel conditions. MPA adapts the size of MAC protocol data units to channel conditions, to increase the throughput and lower the delay in error-prone channels. The results suggest that under erroneous conditions throughput can be maximized by limiting the MPDU size. As second major contribution, this thesis introduces Neighborhood-aware OPPortunistic networking on Smartphones (NOPPoS). NOPPoS creates an opportunistic, pocket-switched network using current generation, off-the-shelf mobile devices. As main novel feature, NOPPoS is highly responsive to node mobility due to periodic, low-energy scans of its environment, using Bluetooth Low Energy advertisements. The last major contribution is the Neighborhood Document Sharing (NDS) protocol. NDS enables users to discover and retrieve arbitrary documents shared by other users in their proximity, i.e. in the communication range of their IEEE 802.11 interface. However, IEEE 802.11 connections are only used on-demand during file transfers and indexing of files in the proximity of the user. Simulations show that NDS interconnects over 90 \% of all devices in communication range. Finally, NDS is extended by the content recommendation system User Preference-based Probability Spreading (UPPS), a graph-based approach. It integrates user-item scoring into a graph-based tag-aware item recommender system. UPPS utilizes novel formulas for affinity and similarity scoring, taking into account user-item preference in the mass diffusion of the recommender system. The presented results show that UPPS is a significant improvement to previous approaches

    MAC Layer Channel Quality Measurement in 802.11

    Full text link

    Medium access control design for distributed opportunistic radio networks

    Get PDF
    Existing wireless networks are characterized by a fixed spectrum assignment policy. However, the scarcity of available spectrum and its inefficient usage demands for a new communication paradigm to exploit the existing spectrum opportunistically. Future Cognitive Radio (CR) devices should be able to sense unoccupied spectrum and will allow the deployment of real opportunistic networks. Still, traditional Physical (PHY) and Medium Access Control (MAC) protocols are not suitable for this new type of networks because they are optimized to operate over fixed assigned frequency bands. Therefore, novel PHY-MAC cross-layer protocols should be developed to cope with the specific features of opportunistic networks. This thesis is mainly focused on the design and evaluation of MAC protocols for Decentralized Cognitive Radio Networks (DCRNs). It starts with a characterization of the spectrum sensing framework based on the Energy-Based Sensing (EBS) technique considering multiple scenarios. Then, guided by the sensing results obtained by the aforementioned technique, we present two novel decentralized CR MAC schemes: the first one designed to operate in single-channel scenarios and the second one to be used in multichannel scenarios. Analytical models for the network goodput, packet service time and individual transmission probability are derived and used to compute the performance of both protocols. Simulation results assess the accuracy of the analytical models as well as the benefits of the proposed CR MAC schemes

    An analytical model of IEEE 80211 DCF for multi-hop wireless networks and its application to goodput and energy analysis

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Ph. D.) -- Bilkent University, 2010.Includes bibliographical references leaves 168-181.In this thesis, we present an analytical model for the IEEE 802.11 DCF in multihop networks that considers hidden terminals and works for a large range of traffic loads. A goodput model which considers rate reduction due to collisions, retransmissions and hidden terminals, and an energy model, which considers energy consumption due to collisions, retransmissions, exponential backoff and freezing mechanisms, and overhearing of nodes, are proposed and used to analyze the goodput and energy performance of various routing strategies in IEEE 802.11 DCF based multi-hop wireless networks. Moreover, an adaptive routing algorithm which determines the optimum routing strategy adaptively according to the network and traffic conditions is suggested. Viewed from goodput aspect the results are as follows: Under light traf- fic, arrival rate of packets is dominant, making any routing strategy equivalently optimum. Under moderate traffic, concurrent transmissions dominate and multihop transmissions become more advantageous. At heavy traffic, multi-hoppingbecomes unstable due to increased packet collisions and excessive traffic congestion, and direct transmission increases goodput. From a throughput aspect, it is shown that throughput is topology dependent rather than traffic load dependent, and multi-hopping is optimum for large networks whereas direct transmissions may increase the throughput for small networks. Viewed from energy aspect similar results are obtained: Under light traf- fic, energy spent during idle mode dominates in the energy model, making any routing strategy nearly optimum. Under moderate traffic, energy spent during idle and receive modes dominates and multi-hop transmissions become more advantageous as the optimum hop number varies with processing power consumed at intermediate nodes. At the very heavy traffic conditions, multi-hopping becomes unstable due to increased collisions and direct transmission becomes more energy-efficient.The choice of hop-count in routing strategy is observed to affect energyefficiency and goodput more for large and homogeneous networks where it is possible to use shorter hops each covering similar distances. The results indicate that a cross-layer routing approach, which takes energy expenditure due to MAC contentions into account and dynamically changes the routing strategy according to the network traffic load, can increase goodput by at least 18% and save energy by at least 21% in a realistic wireless network where the network traffic load changes in time. The goodput gain increases up to 222% and energy saving up to 68% for denser networks where multi-hopping with much shorter hops becomes possible.Aydoğdu, CananPh.D

    Contributions to the routing of traffic flows in multi-hop IEEE 802.11 wireless networks

    Get PDF
    The IEEE 802.11 standard was not initially designed to provide multi-hop capabilities. Therefore, providing a proper traffic performance in Multi-Hop IEEE 802.11 Wireless Networks (MIWNs) becomes a significant challenge. The approach followed in this thesis has been focused on the routing layer in order to obtain applicable solutions not dependent on a specific hardware or driver. Nevertheless, as is the case of most of the research on this field, a cross-layer design has been adopted. Therefore, one of the first tasks of this work was devoted to the study of the phenomena which affect the performance of the flows in MIWNs. Different estimation methodologies and models are presented and analyzed. The first main contribution of this thesis is related to route creation procedures. First, FB-AODV is introduced, which creates routes and forwards packets according to the flows on the contrary to basic AODV which is destination-based. This enhancement permits to balance the load through the network and gives a finer granularity in the control and monitoring of the flows. Results showed that it clearly benefits the performance of the flows. Secondly, a novel routing metric called Weighted Contention and Interference routing Metric (WCIM) is presented. In all analyzed scenarios, WCIM outperformed the other analyzed state-of-the-art routing metrics due to a proper leveraging of the number of hops, the link quality and the suffered contention and interference. The second main contribution of this thesis is focused on route maintenance. Generally, route recovery procedures are devoted to the detection of link breaks due to mobility or fading. However, other phenomena like the arrival of new flows can degrade the performance of active flows. DEMON, which is designed as an enhancement of FB-AODV, allows the preemptive recovery of degraded routes by passively monitoring the performance of active flows. Results showed that DEMON obtains similar or better results than other published solutions in mobile scenarios, while it clearly outperforms the performance of default AODV under congestion Finally, the last chapter of this thesis deals with channel assignment in multi-radio solutions. The main challenge of this research area relies on the circular relationship between channel assignment and routing; channel assignment determines the routes that can be created, while the created routes decide the real channel diversity of the network and the level of interference between the links. Therefore, proposals which join routing and channel assignment are generally complex, centralized and based on traffic patterns, limiting their practical implementation. On the contrary, the mechanisms presented in this thesis are distributed and readily applicable. First, the Interference-based Dynamic Channel Assignment (IDCA) algorithm is introduced. IDCA is a distributed and dynamic channel assignment based on the interference caused by active flows which uses a common channel in order to assure connectivity. In general, IDCA leads to an interesting trade-off between connectivity preservation and channel diversity. Secondly, MR-DEMON is introduced as way of joining channel assignment and route maintenance. As DEMON, MR-DEMON monitors the performance of the active flows traversing the links, but, instead of alerting the source when noticing degradation, it permits reallocating the flows to less interfered channels. Joining route recovery instead of route creation simplifies its application, since traffic patterns are not needed and channel reassignments can be locally decided. The evaluation of MR-DEMON proved that it clearly benefits the performance of IDCA. Also, it improves DEMON functionality by decreasing the number of route recoveries from the source, leading to a lower overhead.El estándar IEEE 802.11 no fue diseñado inicialmente para soportar capacidades multi-salto. Debido a ello, proveer unas prestaciones adecuadas a los flujos de tráfico que atraviesan redes inalámbricas multi-salto IEEE 802.11 supone un reto significativo. La investigación desarrollada en esta tesis se ha centrado en la capa de encaminamiento con el objetivo de obtener soluciones aplicables y no dependientes de un hardware específico. Sin embargo, debido al gran impacto de fenómenos y parámetros relacionados con las capas físicas y de acceso al medio sobre las prestaciones de los tráficos de datos, se han adoptado soluciones de tipo cross-layer. Es por ello que las primeras tareas de la investigación, presentadas en los capítulos iniciales, se dedicaron al estudio y caracterización de estos fenómenos. La primera contribución principal de esta tesis se centra en mecanismos relacionados con la creación de las rutas. Primero, se introduce una mejora del protocolo AODV, que permite crear rutas y encaminar paquetes en base a los flujos de datos, en lugar de en base a los destinos como se da en el caso básico. Esto permite balacear la carga de la red y otorga un mayor control sobre los flujos activos y sus prestaciones, mejorando el rendimiento general de la red. Seguidamente, se presenta una métrica de encaminamiento sensible a la interferencia de la red y la calidad de los enlaces. Los resultados analizados, basados en la simulación de diferentes escenarios, demuestran que mejora significativamente las prestaciones de otras métricas del estado del arte. La segunda contribución está relacionada con el mantenimiento de las rutas activas. Generalmente, los mecanismos de mantenimiento se centran principalmente en la detección de enlaces rotos debido a la movilidad de los nodos o a la propagación inalámbrica. Sin embargo, otros fenómenos como la interferencia y congestión provocada por la llegada de nuevos flujos pueden degradar de forma significativa las prestaciones de los tráficos activos. En base a ello, se diseña un mecanismo de mantenimiento preventivo de rutas, que monitoriza las prestaciones de los flujos activos y permite su reencaminamiento en caso de detectar rutas degradadas. La evaluación de esta solución muestra una mejora significativa sobre el mantenimiento de rutas básico en escenarios congestionados, mientras que en escenarios con nodos móviles obtiene resultados similares o puntualmente mejores que otros mecanismos preventivos diseñados específicamente para casos con movilidad. Finalmente, el último capítulo de la tesis se centra en la asignación de canales en entornos multi-canal y multi-radio con el objetivo de minimizar la interferencia entre flujos activos. El reto principal en este campo es la dependencia circular que se da entre la asignación de canales y la creación de rutas: la asignación de canales determina los enlaces existentes la red y por ello las rutas que se podrán crear, pero son finalmente las rutas y los tráficos activos quienes determinan el nivel real de interferencia que se dará en la red. Es por ello que las soluciones que proponen unificar la asignación de canales y el encaminamiento de tráficos son generalmente complejas, centralizadas y basadas en patrones de tráfico, lo que limita su implementación en entornos reales. En cambio, en nuestro caso adoptamos una solución distribuida y con mayor aplicabilidad. Primero, se define un algoritmo de selección de canales dinámico basado en la interferencia de los flujos activos, que utiliza un canal común en todos los nodos para asegurar la conectividad de la red. A continuación, se introduce un mecanismo que unifica la asignación de canales con el mantenimiento preventivo de las rutas, permitiendo reasignar flujos degradados a otros canales disponibles en lugar de reencaminarlos completamente. Ambas soluciones demuestran ser beneficiosas en este tipo de entornos.Postprint (published version

    Goodput and throughput comparison of single-hop and multi-hop routing for IEEE 802.11 DCF-based wireless networks under hidden terminal existence

    Get PDF
    We investigate how multi-hop routing affects the goodput and throughput performances of IEEE 802.11 distributed coordination function-based wireless networks compared with direct transmission (single hopping), when medium access control dynamics such as carrier sensing, collisions, retransmissions, and exponential backoff are taken into account under hidden terminal presence. We propose a semi-Markov chain-based goodput and throughput model for IEEE 802.11-based wireless networks, which works accurately with both multi-hopping and single hopping for different network topologies and over a large range of traffic loads. Results show that, under light traffic, there is little benefit of parallel transmissions and both single-hop and multi-hop routing achieve the same end-to-end goodput. Under moderate traffic, concurrent transmissions are favorable as multi-hopping improves the goodput up to 730% with respect to single hopping for dense networks. At heavy traffic, multi-hopping becomes unstable because of increased packet collisions and network congestion, and single-hopping achieves higher network layer goodput compared with multi-hop routing. As for the link layer throughput is concerned, multi-hopping increases throughput 75 times for large networks, whereas single hopping may become advantageous for small networks. The results point out that the end-to-end goodput can be improved by adaptively switching between single hopping and multi-hopping according to the traffic load and topology. Copyright © 2015 John Wiley & Sons, Ltd
    corecore