63,659 research outputs found

    Comparison between Suitable Priors for Additive Bayesian Networks

    Full text link
    Additive Bayesian networks are types of graphical models that extend the usual Bayesian generalized linear model to multiple dependent variables through the factorisation of the joint probability distribution of the underlying variables. When fitting an ABN model, the choice of the prior of the parameters is of crucial importance. If an inadequate prior - like a too weakly informative one - is used, data separation and data sparsity lead to issues in the model selection process. In this work a simulation study between two weakly and a strongly informative priors is presented. As weakly informative prior we use a zero mean Gaussian prior with a large variance, currently implemented in the R-package abn. The second prior belongs to the Student's t-distribution, specifically designed for logistic regressions and, finally, the strongly informative prior is again Gaussian with mean equal to true parameter value and a small variance. We compare the impact of these priors on the accuracy of the learned additive Bayesian network in function of different parameters. We create a simulation study to illustrate Lindley's paradox based on the prior choice. We then conclude by highlighting the good performance of the informative Student's t-prior and the limited impact of the Lindley's paradox. Finally, suggestions for further developments are provided.Comment: 8 pages, 4 figure

    On the Prior and Posterior Distributions Used in Graphical Modelling

    Full text link
    Graphical model learning and inference are often performed using Bayesian techniques. In particular, learning is usually performed in two separate steps. First, the graph structure is learned from the data; then the parameters of the model are estimated conditional on that graph structure. While the probability distributions involved in this second step have been studied in depth, the ones used in the first step have not been explored in as much detail. In this paper, we will study the prior and posterior distributions defined over the space of the graph structures for the purpose of learning the structure of a graphical model. In particular, we will provide a characterisation of the behaviour of those distributions as a function of the possible edges of the graph. We will then use the properties resulting from this characterisation to define measures of structural variability for both Bayesian and Markov networks, and we will point out some of their possible applications.Comment: 28 pages, 6 figure

    Markov and Neural Network Models for Prediction of Structural Deterioration of Stormwater Pipe Assets

    Get PDF
    Storm-water pipe networks in Australia are designed to convey water from rainfall and surface runoff. They do not transport sewerage. Their structural deterioration is progressive with aging and will eventually cause pipe collapse with consequences of service interruption. Predicting structural condition of pipes provides vital information for asset management to prevent unexpected failures and to extend service life. This study focused on predicting the structural condition of storm-water pipes with two objectives. The first objective is the prediction of structural condition changes of the whole network of storm-water pipes by a Markov model at different times during their service life. This information can be used for planning annual budget and estimating the useful life of pipe assets. The second objective is the prediction of structural condition of any particular pipe by a neural network model. This knowledge is valuable in identifying pipes that are in poor condition for repair actions. A case study with closed circuit television inspection snapshot data was used to demonstrate the applicability of these two models

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Information Retrieval Models

    Get PDF
    Many applications that handle information on the internet would be completely\ud inadequate without the support of information retrieval technology. How would\ud we find information on the world wide web if there were no web search engines?\ud How would we manage our email without spam filtering? Much of the development\ud of information retrieval technology, such as web search engines and spam\ud filters, requires a combination of experimentation and theory. Experimentation\ud and rigorous empirical testing are needed to keep up with increasing volumes of\ud web pages and emails. Furthermore, experimentation and constant adaptation\ud of technology is needed in practice to counteract the effects of people that deliberately\ud try to manipulate the technology, such as email spammers. However,\ud if experimentation is not guided by theory, engineering becomes trial and error.\ud New problems and challenges for information retrieval come up constantly.\ud They cannot possibly be solved by trial and error alone. So, what is the theory\ud of information retrieval?\ud There is not one convincing answer to this question. There are many theories,\ud here called formal models, and each model is helpful for the development of\ud some information retrieval tools, but not so helpful for the development others.\ud In order to understand information retrieval, it is essential to learn about these\ud retrieval models. In this chapter, some of the most important retrieval models\ud are gathered and explained in a tutorial style
    corecore