14,721 research outputs found

    The construction of good lattice rules and polynomial lattice rules

    Full text link
    A comprehensive overview of lattice rules and polynomial lattice rules is given for function spaces based on ā„“p\ell_p semi-norms. Good lattice rules and polynomial lattice rules are defined as those obtaining worst-case errors bounded by the optimal rate of convergence for the function space. The focus is on algebraic rates of convergence O(Nāˆ’Ī±+Ļµ)O(N^{-\alpha+\epsilon}) for Ī±ā‰„1\alpha \ge 1 and any Ļµ>0\epsilon > 0, where Ī±\alpha is the decay of a series representation of the integrand function. The dependence of the implied constant on the dimension can be controlled by weights which determine the influence of the different dimensions. Different types of weights are discussed. The construction of good lattice rules, and polynomial lattice rules, can be done using the same method for all 1<pā‰¤āˆž1 < p \le \infty; but the case p=1p=1 is special from the construction point of view. For 1<pā‰¤āˆž1 < p \le \infty the component-by-component construction and its fast algorithm for different weighted function spaces is then discussed

    Successive Coordinate Search and Component-by-Component Construction of Rank-1 Lattice Rules

    Full text link
    The (fast) component-by-component (CBC) algorithm is an efficient tool for the construction of generating vectors for quasi-Monte Carlo rank-1 lattice rules in weighted reproducing kernel Hilbert spaces. We consider product weights, which assigns a weight to each dimension. These weights encode the effect a certain variable (or a group of variables by the product of the individual weights) has. Smaller weights indicate less importance. Kuo (2003) proved that the CBC algorithm achieves the optimal rate of convergence in the respective function spaces, but this does not imply the algorithm will find the generating vector with the smallest worst-case error. In fact it does not. We investigate a generalization of the component-by-component construction that allows for a general successive coordinate search (SCS), based on an initial generating vector, and with the aim of getting closer to the smallest worst-case error. The proposed method admits the same type of worst-case error bounds as the CBC algorithm, independent of the choice of the initial vector. Under the same summability conditions on the weights as in [Kuo,2003] the error bound of the algorithm can be made independent of the dimension dd and we achieve the same optimal order of convergence for the function spaces from [Kuo,2003]. Moreover, a fast version of our method, based on the fast CBC algorithm by Nuyens and Cools, is available, reducing the computational cost of the algorithm to O(dā€‰nlogā”(n))O(d \, n \log(n)) operations, where nn denotes the number of function evaluations. Numerical experiments seeded by a Korobov-type generating vector show that the new SCS algorithm will find better choices than the CBC algorithm and the effect is better when the weights decay slower.Comment: 13 pages, 1 figure, MCQMC2016 conference (Stanford

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Constructing Sobol' sequences with better two-dimensional projections

    Get PDF
    Direction numbers for generating Sobol' sequences that satisfy the so-called Property A in up to 1111 dimensions have previously been given in Joe and Kuo [ACM Trans. Math. Software, 29 (2003), pp. 49ā€“57]. However, these Sobol' sequences may have poor two-dimensional projections. Here we provide a new set of direction numbers alleviating this problem. These are obtained by treating Sobol' sequences in d dimensions as (t, d)-sequences and then optimizing the t-values of the two-dimensional projections. Our target dimension is 21201
    • ā€¦
    corecore