4,960 research outputs found

    Good Codes From Generalised Algebraic Geometry Codes

    Get PDF
    Algebraic geometry codes or Goppa codes are defined with places of degree one. In constructing generalised algebraic geometry codes places of higher degree are used. In this paper we present 41 new codes over GF(16) which improve on the best known codes of the same length and rate. The construction method uses places of small degree with a technique originally published over 10 years ago for the construction of generalised algebraic geometry codes.Comment: 3 pages, to be presented at the IEEE Symposium on Information Theory (ISIT 2010) in Austin, Texas, June 201

    Algebraic Codes For Error Correction In Digital Communication Systems

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 29.11.2016 by CS (TIS).Metadata merged with duplicate record (http://hdl.handle.net/10026.1/899) on 20.12.2016 by CS (TIS).C. Shannon presented theoretical conditions under which communication was possible error-free in the presence of noise. Subsequently the notion of using error correcting codes to mitigate the effects of noise in digital transmission was introduced by R. Hamming. Algebraic codes, codes described using powerful tools from algebra took to the fore early on in the search for good error correcting codes. Many classes of algebraic codes now exist and are known to have the best properties of any known classes of codes. An error correcting code can be described by three of its most important properties length, dimension and minimum distance. Given codes with the same length and dimension, one with the largest minimum distance will provide better error correction. As a result the research focuses on finding improved codes with better minimum distances than any known codes. Algebraic geometry codes are obtained from curves. They are a culmination of years of research into algebraic codes and generalise most known algebraic codes. Additionally they have exceptional distance properties as their lengths become arbitrarily large. Algebraic geometry codes are studied in great detail with special attention given to their construction and decoding. The practical performance of these codes is evaluated and compared with previously known codes in different communication channels. Furthermore many new codes that have better minimum distance to the best known codes with the same length and dimension are presented from a generalised construction of algebraic geometry codes. Goppa codes are also an important class of algebraic codes. A construction of binary extended Goppa codes is generalised to codes with nonbinary alphabets and as a result many new codes are found. This construction is shown as an efficient way to extend another well known class of algebraic codes, BCH codes. A generic method of shortening codes whilst increasing the minimum distance is generalised. An analysis of this method reveals a close relationship with methods of extending codes. Some new codes from Goppa codes are found by exploiting this relationship. Finally an extension method for BCH codes is presented and this method is shown be as good as a well known method of extension in certain cases

    Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes

    Get PDF
    We give a polynomial time attack on the McEliece public key cryptosystem based on subcodes of algebraic geometry (AG) codes. The proposed attack reposes on the distinguishability of such codes from random codes using the Schur product. Wieschebrink treated the genus zero case a few years ago but his approach cannot be extent straightforwardly to other genera. We address this problem by introducing and using a new notion, which we call the t-closure of a code

    Two-Point Codes for the Generalized GK curve

    Get PDF
    We improve previously known lower bounds for the minimum distance of certain two-point AG codes constructed using a Generalized Giulietti-Korchmaros curve (GGK). Castellanos and Tizziotti recently described such bounds for two-point codes coming from the Giulietti-Korchmaros curve (GK). Our results completely cover and in many cases improve on their results, using different techniques, while also supporting any GGK curve. Our method builds on the order bound for AG codes: to enable this, we study certain Weierstrass semigroups. This allows an efficient algorithm for computing our improved bounds. We find several new improvements upon the MinT minimum distance tables.Comment: 13 page

    Applications of finite geometry in coding theory and cryptography

    Get PDF
    We present in this article the basic properties of projective geometry, coding theory, and cryptography, and show how finite geometry can contribute to coding theory and cryptography. In this way, we show links between three research areas, and in particular, show that finite geometry is not only interesting from a pure mathematical point of view, but also of interest for applications. We concentrate on introducing the basic concepts of these three research areas and give standard references for all these three research areas. We also mention particular results involving ideas from finite geometry, and particular results in cryptography involving ideas from coding theory

    Information-theoretic Physical Layer Security for Satellite Channels

    Full text link
    Shannon introduced the classic model of a cryptosystem in 1949, where Eve has access to an identical copy of the cyphertext that Alice sends to Bob. Shannon defined perfect secrecy to be the case when the mutual information between the plaintext and the cyphertext is zero. Perfect secrecy is motivated by error-free transmission and requires that Bob and Alice share a secret key. Wyner in 1975 and later I.~Csisz\'ar and J.~K\"orner in 1978 modified the Shannon model assuming that the channels are noisy and proved that secrecy can be achieved without sharing a secret key. This model is called wiretap channel model and secrecy capacity is known when Eve's channel is noisier than Bob's channel. In this paper we review the concept of wiretap coding from the satellite channel viewpoint. We also review subsequently introduced stronger secrecy levels which can be numerically quantified and are keyless unconditionally secure under certain assumptions. We introduce the general construction of wiretap coding and analyse its applicability for a typical satellite channel. From our analysis we discuss the potential of keyless information theoretic physical layer security for satellite channels based on wiretap coding. We also identify system design implications for enabling simultaneous operation with additional information theoretic security protocols
    corecore