1,860 research outputs found

    A Survey of Monte Carlo Tree Search Methods

    Get PDF
    Monte Carlo tree search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarize the results from the key game and nongame domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work

    Application of the Monte-Carlo Tree Search to Multi-Action Turn-Based Games with Hidden Information

    Get PDF
    Traditional search algorithms struggle when applied to complex multi-action turn-based games. The introduction of hidden information further increases domain complexity. The Monte-Carlo Tree Search (MCTS) algorithm has previously been applied to multi-action turn-based games, but not multi-action turn-based games with hidden information. This thesis compares several Monte Carlo Tree Search (MCTS) extensions (Determinized/Perfect Information Monte Carlo, Multi-Observer Information Set MCTS, and Belief State MCTS) in TUBSTAP, an open-source multi-action turn-based game, modified to include hidden information via fog-of-war

    General-Purpose Planning Algorithms In Partially-Observable Stochastic Games

    Get PDF
    Partially observable stochastic games (POSGs) are difficult domains to plan in because they feature multiple agents with potentially opposing goals, parts of the world are hidden from the agents, and some actions have random outcomes. It is infeasible to solve a large POSG optimally. While it may be tempting to design a specialized algorithm for finding suboptimal solutions to a particular POSG, general-purpose planning algorithms can work just as well, but with less complexity and domain knowledge required. I explore this idea in two different POSGs: Navy Defense and Duelyst. In Navy Defense, I show that a specialized algorithm framework, goal-driven autonomy, which requires a complex subsystem separate from the planner for explicitly reasoning about goals, is unnecessary, as simple general planners such as hindsight optimization exhibit implicit goal reasoning and have strong performance. In Duelyst, I show that a specialized expert-rule-based AI can be consistently beaten by a simple general planner using only a small amount of domain knowledge. I also introduce a modification to Monte Carlo tree search that increases performance when rollouts are slow and there are time constraints on planning

    Lookahead Pathology in Monte-Carlo Tree Search

    Full text link
    Monte-Carlo Tree Search (MCTS) is an adversarial search paradigm that first found prominence with its success in the domain of computer Go. Early theoretical work established the game-theoretic soundness and convergence bounds for Upper Confidence bounds applied to Trees (UCT), the most popular instantiation of MCTS; however, there remain notable gaps in our understanding of how UCT behaves in practice. In this work, we address one such gap by considering the question of whether UCT can exhibit lookahead pathology -- a paradoxical phenomenon first observed in Minimax search where greater search effort leads to worse decision-making. We introduce a novel family of synthetic games that offer rich modeling possibilities while remaining amenable to mathematical analysis. Our theoretical and experimental results suggest that UCT is indeed susceptible to pathological behavior in a range of games drawn from this family

    Exploiting Opponent Modeling For Learning In Multi-agent Adversarial Games

    Get PDF
    An issue with learning effective policies in multi-agent adversarial games is that the size of the search space can be prohibitively large when the actions of both teammates and opponents are considered simultaneously. Opponent modeling, predicting an opponent’s actions in advance of execution, is one approach for selecting actions in adversarial settings, but it is often performed in an ad hoc way. In this dissertation, we introduce several methods for using opponent modeling, in the form of predictions about the players’ physical movements, to learn team policies. To explore the problem of decision-making in multi-agent adversarial scenarios, we use our approach for both offline play generation and real-time team response in the Rush 2008 American football simulator. Simultaneously predicting the movement trajectories, future reward, and play strategies of multiple players in real-time is a daunting task but we illustrate how it is possible to divide and conquer this problem with an assortment of data-driven models. By leveraging spatio-temporal traces of player movements, we learn discriminative models of defensive play for opponent modeling. With the reward information from previous play matchups, we use a modified version of UCT (Upper Conference Bounds applied to Trees) to create new offensive plays and to learn play repairs to counter predicted opponent actions. iii In team games, players must coordinate effectively to accomplish tasks while foiling their opponents either in a preplanned or emergent manner. An effective team policy must generate the necessary coordination, yet considering all possibilities for creating coordinating subgroups is computationally infeasible. Automatically identifying and preserving the coordination between key subgroups of teammates can make search more productive by pruning policies that disrupt these relationships. We demonstrate that combining opponent modeling with automatic subgroup identification can be used to create team policies with a higher average yardage than either the baseline game or domain-specific heuristics
    • …
    corecore