22,268 research outputs found

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    A spiral model for adding automatic, adaptive authoring to adaptive hypermedia

    Get PDF
    At present a large amount of research exists into the design and implementation of adaptive systems. However, not many target the complex task of authoring in such systems, or their evaluation. In order to tackle these problems, we have looked into the causes of the complexity. Manual annotation has proven to be a bottleneck for authoring of adaptive hypermedia. One such solution is the reuse of automatically generated metadata. In our previous work we have proposed the integration of the generic Adaptive Hypermedia authoring environment, MOT ( My Online Teacher), and a semantic desktop environment, indexed by Beagle++. A prototype, Sesame2MOT Enricher v1, was built based upon this integration approach and evaluated. After the initial evaluations, a web-based prototype was built (web-based Sesame2MOT Enricher v2 application) and integrated in MOT v2, conforming with the findings of the first set of evaluations. This new prototype underwent another evaluation. This paper thus does a synthesis of the approach in general, the initial prototype, with its first evaluations, the improved prototype and the first results from the most recent evaluation round, following the next implementation cycle of the spiral model [Boehm, 88]

    Authoring courses with rich adaptive sequencing for IMS learning design

    Get PDF
    This paper describes the process of translating an adaptive sequencing strategy designed using Sequencing Graphs to the semantics of IMS Learning Design. The relevance of this contribution is twofold. First, it combines the expressive power and ļ¬‚exibility of Sequencing Graphs, and the interoperability capabilities of IMS. Second, it shows some important limitations of IMS speciļ¬cations (focusing on Learning Design) for the sequencing of learning activities

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, KĆ¼hme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    Model-driven transformation and validation of adaptive educational hypermedia using CAVIAr

    Get PDF
    Authoring of Adaptive Educational Hypermedia is a complex activity requiring the combination of a range of design and validation techniques.We demonstrate how Adaptive Educational Hypermedia can be transformed into CAVIAr courseware validation models allowing for its validation. The model-based representation and analysis of different concerns and model-based mappings and transformations are key contributors to this integrated solution. We illustrate the benefits of Model Driven Engineering methodologies that allow for interoperability between CAVIAr and a well known Adaptive Educational Hypermedia framework. By allowing for the validation of Adaptive Educational Hypermedia, the course creator limits the risk of pedagogical problems in migrating to Adaptive Educational Hypermedia from static courseware

    The added value of implementing the Planet Game scenario with Collage and Gridcole

    Get PDF
    This paper discusses the suitability and the added value of Collage and Gridcole when contrasted with other solutions participating in the ICALT 2006 workshop titled ā€œComparing educational modelling languages on a case study.ā€ In this workshop each proposed solution was challenged to implement a Computer-Supported Collaborative Learning situation (CSCL) posed by the workshopā€™s organizers. Collage is a pattern-based authoring tool for the creation of CSCL scripts compliant with IMS Learning Design (IMS LD). These IMS LD scripts can be enacted by the Gridcole tailorable CSCL system. The analysis presented in the paper is organized as a case study which considers the data recorded in the workshop discussion as well the information reported in the workshop contributions. The results of this analysis show how Collage and Gridcole succeed in implementing the scenario and also point out some significant advantages in terms of design reusability and generality, user-friendliness, and enactment flexibility

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Education vs. Entertainment: A Cultural History of Children's Software

    Get PDF
    Part of the Volume on the Ecology of Games: Connecting Youth, Games, and Learning This chapter draws on ethnographic material to consider the cultural politics and recent history of children's software and reflects on how this past can inform our current efforts to mobilize games for learning. The analysis uses a concept of genre as a way of making linkages across the distributed but interconnected circuit of everyday play, software content, and industry context. Organized through three genres in children's software -- academic, entertainment, and construction -- the body of the chapter describes how these genres play out within a production and advertising context, in the design of particular software titles, and at sites of play in after-school computer centers where the fieldwork was conducted
    • ā€¦
    corecore