503 research outputs found

    Dual weighted residual based error control for nonstationary convection-dominated equations: potential or ballast?

    Full text link
    Even though substantial progress has been made in the numerical approximation of convection-dominated problems, its major challenges remain in the scope of current research. In particular, parameter robust a posteriori error estimates for quantities of physical interest and adaptive mesh refinement strategies with proved convergence are still missing. Here, we study numerically the potential of the Dual Weighted Residual (DWR) approach applied to stabilized finite element methods to further enhance the quality of approximations. The impact of a strict application of the DWR methodology is particularly focused rather than the reduction of computational costs for solving the dual problem by interpolation or localization.Comment: arXiv admin note: text overlap with arXiv:1803.1064

    Goal-oriented adaptivity for a conforming residual minimization method in a dual discontinuous Galerkin norm

    Get PDF
    We propose a goal-oriented mesh-adaptive algorithm for a finite element method stabilized via residual minimization on dual discontinuous-Galerkin norms. By solving a saddle-point problem, this residual minimization delivers a stable continuous approximation to the solution on each mesh instance and a residual projection onto a broken polynomial space, which is a robust error estimator to minimize the discrete energy norm via automatic mesh refinement. In this work, we propose and analyze a goal-oriented adaptive algorithm for this stable residual minimization. We solve the primal and adjoint problems considering the same saddle-point formulation and different right-hand sides. By solving a third stable problem, we obtain two efficient error estimates to guide goal oriented adaptivity. We illustrate the performance of this goal-oriented adaptive strategy on advection-diffusion reaction problems

    Goal-based h-adaptivity of the 1-D diamond difference discrete ordinate method.

    Get PDF
    The quantity of interest (QoI) associated with a solution of a partial differential equation (PDE) is not, in general, the solution itself, but a functional of the solution. Dual weighted residual (DWR) error estimators are one way of providing an estimate of the error in the QoI resulting from the discretisation of the PDE. This paper aims to provide an estimate of the error in the QoI due to the spatial discretisation, where the discretisation scheme being used is the diamond difference (DD) method in space and discrete ordinate (SNSN) method in angle. The QoI are reaction rates in detectors and the value of the eigenvalue (Keff)(Keff) for 1-D fixed source and eigenvalue (KeffKeff criticality) neutron transport problems respectively. Local values of the DWR over individual cells are used as error indicators for goal-based mesh refinement, which aims to give an optimal mesh for a given QoI

    A Continuous hp−hp-Mesh Model for Discontinuous Petrov-Galerkin Finite Element Schemes with Optimal Test Functions

    Full text link
    We present an anisotropic hp−hp-mesh adaptation strategy using a continuous mesh model for discontinuous Petrov-Galerkin (DPG) finite element schemes with optimal test functions, extending our previous work on h−h-adaptation. The proposed strategy utilizes the inbuilt residual-based error estimator of the DPG discretization to compute both the polynomial distribution and the anisotropy of the mesh elements. In order to predict the optimal order of approximation, we solve local problems on element patches, thus making these computations highly parallelizable. The continuous mesh model is formulated either with respect to the error in the solution, measured in a suitable norm, or with respect to certain admissible target functionals. We demonstrate the performance of the proposed strategy using several numerical examples on triangular grids. Keywords: Discontinuous Petrov-Galerkin, Continuous mesh models, hp−hp- adaptations, Anisotrop

    Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems

    Get PDF
    We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov-Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a parallel multilevel preconditioner. Numerical experiments for the linear transport equation and the Maxwell equation in 2D underline the effciency of the overall adaptive solution process

    Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems. Revised March 2016

    Get PDF
    We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov-Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a parallel multilevel preconditioner. Numerical experiments for the linear transport equation and the Maxwell equation in 2D underline the effciency of the overall adaptive solution process

    Explicit-in-Time Variational Formulations for Goal-Oriented Adaptivity

    Get PDF
    Goal-Oriented Adaptivity (GOA) is a powerful tool to accurately approximate physically relevant features of the solution of Partial Differential Equations (PDEs). It delivers optimal grids to solve challenging engineering problems. In time dependent problems, GOA requires to represent the error in the Quantity of Interest (QoI) as an integral over the whole space-time domain in order to reduce it via adaptive refinements. A full space-time variational formulation of the problem allows the aforementioned error representation. Thus, variational spacetime formulations for PDEs have been of great interest in the last decades, among other things, because they allow to develop mesh-adaptive algorithms. Since it is known that implicit time marching schemes have variational structure, they are often employed for GOA in time-domain problems. When coming to explicit-intime methods, these were introduced for Ordinary In this dissertation, we prove that the explicit Runge-Kutta (RK) methods can be expressed as discontinuous-in-time Petrov-Galerkin (dPG) methods for the linear advection-diffusion equation. We systematically build trial and test functions that, after exact integration in time, lead to one, two, and general stage explicit RK methods. This approach enables us to reproduce the existing time domain goal-oriented adaptive algorithms using explicit methods in time. Here, we employ the lowest order dPG formulation that we propose to recover the Forward Euler method and we derive an appropriate error representation. Then, we propose an explicit-in-time goal-oriented adaptive algorithm that performs local refinements in space. In terms of time domain adaptivity, we impose the Courant-Friedrichs-Lewy (CFL) condition to ensure the stability of the method. We provide some numerical results in one-dimensional (1D)+time for the diffusion and advection-diffusion equations to show the performance of the proposed algorithm. On the other hand, time-domain adaptive algorithms involve solving a dual problem that runs backwards in time. This process is, in general, computationally expensive in terms of memory storage. In this work, we dene a pseudo-dual problem that runs forwards in time. We also describe a forward-in-time adaptive algorithm that works for some specific problems. Although it is not possible to dene a general dual problem running forwards in time that provides information about future states, we provide numerical evidence via one-dimensional problems in space to illustrate the efficiency of our algorithm as well as its limitations. As a complementary method, we propose a hybrid algorithm that employs the classical backward-in-time dual problem once and then performs the adaptive process forwards in time. We also generalize a novel error representation for goal-oriented adaptivity using (unconventional) pseudo-dual problems in the context of frequency-domain wave-propagation problems to the time-dependent wave equation. We show via 1D+time numerical results that the upper bounds for the new error representation are sharper than the classical ones. Therefore, this new error representation can be used to design more efficient goal-oriented adaptive methodologies. Finally, as classical Galerkin methods may lead to instabilities in advection-dominated-diffusion problems and therefore, inappropriate refinements, we propose a novel stabilized discretization method, which we call Isogeometric Residual Minimization (iGRM) with direction splitting. This method combines the benefits resulting from Isogeometric Analysis (IGA), residual minimization, and Alternating Direction Implicit (ADI) methods. We employ second order ADI time integrator schemes, B-spline basis functions in space and, at each time step, we solve a stabilized mixed method based on residual minimization. We show that the resulting system of linear equations has a Kronecker product structure, which results in a linear computational cost of the direct solver, even using implicit time integration schemes together with the stabilized mixed formulation. We test our method in 2D and 3D+time advection-diffusion problems. The derivation of a time-domain goal-oriented strategy based on iGRM will be considered in future works
    • …
    corecore