3,204 research outputs found

    Coordinated Multi-Agent Imitation Learning

    Get PDF
    We study the problem of imitation learning from demonstrations of multiple coordinating agents. One key challenge in this setting is that learning a good model of coordination can be difficult, since coordination is often implicit in the demonstrations and must be inferred as a latent variable. We propose a joint approach that simultaneously learns a latent coordination model along with the individual policies. In particular, our method integrates unsupervised structure learning with conventional imitation learning. We illustrate the power of our approach on a difficult problem of learning multiple policies for fine-grained behavior modeling in team sports, where different players occupy different roles in the coordinated team strategy. We show that having a coordination model to infer the roles of players yields substantially improved imitation loss compared to conventional baselines.Comment: International Conference on Machine Learning 201

    Learning Models for Following Natural Language Directions in Unknown Environments

    Get PDF
    Natural language offers an intuitive and flexible means for humans to communicate with the robots that we will increasingly work alongside in our homes and workplaces. Recent advancements have given rise to robots that are able to interpret natural language manipulation and navigation commands, but these methods require a prior map of the robot's environment. In this paper, we propose a novel learning framework that enables robots to successfully follow natural language route directions without any previous knowledge of the environment. The algorithm utilizes spatial and semantic information that the human conveys through the command to learn a distribution over the metric and semantic properties of spatially extended environments. Our method uses this distribution in place of the latent world model and interprets the natural language instruction as a distribution over the intended behavior. A novel belief space planner reasons directly over the map and behavior distributions to solve for a policy using imitation learning. We evaluate our framework on a voice-commandable wheelchair. The results demonstrate that by learning and performing inference over a latent environment model, the algorithm is able to successfully follow natural language route directions within novel, extended environments.Comment: ICRA 201

    Predictive-State Decoders: Encoding the Future into Recurrent Networks

    Full text link
    Recurrent neural networks (RNNs) are a vital modeling technique that rely on internal states learned indirectly by optimization of a supervised, unsupervised, or reinforcement training loss. RNNs are used to model dynamic processes that are characterized by underlying latent states whose form is often unknown, precluding its analytic representation inside an RNN. In the Predictive-State Representation (PSR) literature, latent state processes are modeled by an internal state representation that directly models the distribution of future observations, and most recent work in this area has relied on explicitly representing and targeting sufficient statistics of this probability distribution. We seek to combine the advantages of RNNs and PSRs by augmenting existing state-of-the-art recurrent neural networks with Predictive-State Decoders (PSDs), which add supervision to the network's internal state representation to target predicting future observations. Predictive-State Decoders are simple to implement and easily incorporated into existing training pipelines via additional loss regularization. We demonstrate the effectiveness of PSDs with experimental results in three different domains: probabilistic filtering, Imitation Learning, and Reinforcement Learning. In each, our method improves statistical performance of state-of-the-art recurrent baselines and does so with fewer iterations and less data.Comment: NIPS 201

    Integration of Imitation Learning using GAIL and Reinforcement Learning using Task-achievement Rewards via Probabilistic Graphical Model

    Full text link
    Integration of reinforcement learning and imitation learning is an important problem that has been studied for a long time in the field of intelligent robotics. Reinforcement learning optimizes policies to maximize the cumulative reward, whereas imitation learning attempts to extract general knowledge about the trajectories demonstrated by experts, i.e., demonstrators. Because each of them has their own drawbacks, methods combining them and compensating for each set of drawbacks have been explored thus far. However, many of the methods are heuristic and do not have a solid theoretical basis. In this paper, we present a new theory for integrating reinforcement and imitation learning by extending the probabilistic generative model framework for reinforcement learning, {\it plan by inference}. We develop a new probabilistic graphical model for reinforcement learning with multiple types of rewards and a probabilistic graphical model for Markov decision processes with multiple optimality emissions (pMDP-MO). Furthermore, we demonstrate that the integrated learning method of reinforcement learning and imitation learning can be formulated as a probabilistic inference of policies on pMDP-MO by considering the output of the discriminator in generative adversarial imitation learning as an additional optimal emission observation. We adapt the generative adversarial imitation learning and task-achievement reward to our proposed framework, achieving significantly better performance than agents trained with reinforcement learning or imitation learning alone. Experiments demonstrate that our framework successfully integrates imitation and reinforcement learning even when the number of demonstrators is only a few.Comment: Submitted to Advanced Robotic

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page
    • …
    corecore