127 research outputs found

    Managing Incomplete Preference Relations in Decision Making: A Review and Future Trends

    Get PDF
    In decision making, situations where all experts are able to efficiently express their preferences over all the available options are the exception rather than the rule. Indeed, the above scenario requires all experts to possess a precise or sufficient level of knowledge of the whole problem to tackle, including the ability to discriminate the degree up to which some options are better than others. These assumptions can be seen unrealistic in many decision making situations, especially those involving a large number of alternatives to choose from and/or conflicting and dynamic sources of information. Some methodologies widely adopted in these situations are to discard or to rate more negatively those experts that provide preferences with missing values. However, incomplete information is not equivalent to low quality information, and consequently these methodologies could lead to biased or even bad solutions since useful information might not being taken properly into account in the decision process. Therefore, alternative approaches to manage incomplete preference relations that estimates the missing information in decision making are desirable and possible. This paper presents and analyses methods and processes developed on this area towards the estimation of missing preferences in decision making, and highlights some areas for future research

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Isomorphic multiplicative transitivity for intuitionistic and interval-valued fuzzy preference relations and its application in deriving their priority vectors

    Get PDF
    Intuitionistic fuzzy preference relations (IFPRs) are used to deal with hesitation while interval-valued fuzzy preference relations (IVFPRs) are for uncertainty in multi-criteria decision making (MCDM). This article aims to explore the isomorphic multiplicative transitivity for IFPRs and IVFPRs, which builds the substantial relationship between hesitation and uncertainty in MCDM. To do that, the definition of the multiplicative transitivity property of IFPRs is established by combining the multiplication of intuitionistic fuzzy sets and Tanino's multiplicative transitivity property of fuzzy preference relations (FPRs). It is proved to be isomorphic to the multiplicative transitivity of IVFPRs derived via Zadeh's Extension Principle. The use of the multiplicative transitivity isomorphism is twofold: (1) to discover the substantial relationship between IFPRs and IVFPRs, which will bridge the gap between hesitation and uncertainty in MCDM problems; and (2) to strengthen the soundness of the multiplicative transitivity property of IFPRs and IVFPRs by supporting each other with two different reliable sources, respectively. Furthermore, based on the existing isomorphism, the concept of multiplicative consistency for IFPRs is defined through a strict mathematical process, and it is proved to satisfy the following several desirable properties: weak--transitivity, max-max--transitivity, and center-division--transitivity. A multiplicative consistency based multi-objective programming (MOP) model is investigated to derive the priority vector from an IFPR. This model has the advantage of not losing information as the priority vector representation coincides with that of the input information, which was not the case with existing methods where crisp priority vectors were derived as a consequence of modelling transitivity just for the intuitionistic membership function and not for the intuitionistic non-membership function. Finally, a numerical example concerning green supply selection is given to validate the efficiency and practicality of the proposed multiplicative consistency MOP model

    Goal programming approaches to deriving interval fuzzy preference relations

    Get PDF
    This article investigates the consistency of interval fuzzy preference relations based on interval arithmetic, and new definitions are introduced for additive consistent, multiplicative consistent and weakly transitive interval fuzzy preference relations. Transformation functions are put forward to convert normalized interval weights into consistent interval fuzzy preference relations. By analyzing the relationship between interval weights and consistent interval fuzzy preference relations, goal-programming-based models are developed for deriving interval weights from interval fuzzy preference relations for both individual and group decision-making situations. The proposed models are illustrated by a numerical example and an international exchange doctoral student selection problem

    Consistency based completion approaches of incomplete preference relations in uncertain decision contexts.

    Get PDF
    Uncertainty, hesitation and vagueness are inherent to human beings when articulating opinions and preferences. Therefore in decision making situations it might well be the case that experts are unable to express their opinions in an accurate way. Under these circumstances, various families of preference relations (PRs) have been proposed (linguistic, intuitionistic and interval fuzzy PRs) to allow the experts to manifest some degree of hesitation when enunciating their opinions. An extreme case of uncertainty happens when an expert is unable to differentiate the degree up to which one preference is preferred to another. Henceforth, incomplete preference relations are possible. It is worth to bear in mind that incomplete information does not mean low quality information, on the contrary, in many occasions experts might prefer no to provide information in other to keep consistency. Consequently mechanism to deal with incomplete information in decision making are necessary. This contribution presents the main consistency based completion approaches to estimate incomplete preference values in linguistic, intuitionistic and interval fuzzy PRs

    Optimal weighting models based on linear uncertain constraints in intuitionistic fuzzy preference relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Although the classic exponential-smoothing models and grey prediction models have been widely used in time series forecasting, this paper shows that they are susceptible to fluctu- ations in samples. A new fractional bidirectional weakening buffer operator for time series prediction is proposed in this paper. This new operator can effectively reduce the negative impact of unavoidable sample fluctuations. It overcomes limitations of existing weakening buffer operators, and permits better control of fluctuations from the entire sample period. Due to its good performance in improving stability of the series smoothness, the new op- erator can better capture the real developing trend in raw data and improve forecast accu- racy. The paper then proposes a novel methodology that combines the new bidirectional weakening buffer operator and the classic grey prediction model. Through a number of case studies, this method is compared with several classic models, such as the exponential smoothing model and the autoregressive integrated moving average model, etc. Values of three error measures show that the new method outperforms other methods, especially when there are data fluctuations near the forecasting horizon. The relative advantages of the new method on small sample predictions are further investigated. Results demonstrate that model based on the proposed fractional bidirectional weakening buffer operator has higher forecasting accuracy

    The Optimization Ordering Model for Intuitionistic Fuzzy Preference Relations with Utility Functions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Intuitionistic fuzzy sets describe information from the three aspects of membership degree, non-membership degree and hesitation degree, which has more practical significance when uncertainty pervades qualitative decision problems. In this paper, we investigate the problem of ranking intuitionistic fuzzy preference relations (IFPRs) based on various non-linear utility functions. First, we transform IFPRs into their isomorphic interval-value fuzzy preference relations (IVFPRs), and utilise non-linear utility functions, such as parabolic, S-shaped, and hyperbolic absolute risk aversion, to fit the true value of a decision-maker's judgement. Ultimately, the optimization ordering models for the membership and non-membership of IVFPRs based on utility function are constructed, with objective function aiming at minimizing the distance deviation between the multiplicative consistency ideal judgment and the actual judgment, represented by utility function, subject to the decision-maker's utility constraints. The proposed models ensure that more factual and optimal ranking of alternative is acquired, avoiding information distortion caused by the operations of intervals. Second, by introducing a non-Archimedean infinitesimal, we establish the optimization ordering model for IFPRs with the priority of utility or deviation, which realises the goal of prioritising solutions under multi-objective programming. Subsequently, we verify that a close connection exists between the ranking for membership and non-membership degree IVFPRs. Comparison analyses with existing approaches are summarized to demonstrate that the proposed models have advantage in dealing with group decision making problems with IFPRs

    Multiplicative Consistency Ascertaining, Inconsistency Repairing, and Weights Derivation of Hesitant Multiplicative Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This article investigates multiplicative consistency ascertaining, inconsistency repairing, and weights derivation for hesitant multiplicative preference relations (HMPRs). First, the completely multiplicative consistency and weakly multiplicative consistency of HMPRs are defined. Based on them, 0-1 mixed programming models and simple algebraic operations are proposed to ascertain the multiplicative consistency of HMPRs. Then, some goal programming models are developed to generate the weights from consistent HMPRs and to revise inconsistent HMPRs. An integrated procedure to manage the multiplicative consistencies of HMPRs is designed. The proposed methods are also extended to accommodate incomplete HMPRs, and to estimate missing values. Finally, some numerical examples, a comparative analysis with existent approaches, and a simulation analysis are included to illustrate the practicality and effectiveness of the developed models

    Minimum Cost Consensus Models based on Random Opinions

    Get PDF
    In some complex group decision making cases, the opinions of decision makers (DMs) present random characteristic. However, it is difficult to determine the range of opinions by knowing only their probability distributions. In this paper, we construct cost consensus models with random opinions. The objective function is obtaining the minimum consensus budget under a certain confidence level. Nonetheless, the constraints restrict the upper limit of the consensus cost, the lower limit of DMs' compensations, and the opinions deviation between DMs and the moderator. As such, probabilistic planning based on a genetic algorithm is designed to resolve the minimum cost consensus models based on China's urban demolition negotiation, which can better simulate the consensus decision-making process and obtain a satisfactory solution for the random optimization consensus models. The proposed models generalize both Ben-Arieh's minimum cost consensus model and Gong's consensus model with uncertain opinions. Considering that the opinions of DMs and the moderator obey various distributions, the models simulate the opinion characteristics more effectively. In the case analysis, a sensitivity analysis method is adopted to obtain the minimum budget, and probabilistic planning based on genetic algorithm to obtain a satisfactory solution that is closer to reality

    An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and Fusion: Taxonomy and future directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The reciprocal preference relation (RPR) is a powerful tool to represent decision makers’ preferences in decision making problems. In recent years, various types of RPRs have been reported and investigated, some of them being the ‘classical’ RPRs, interval-valued RPRs and hesitant RPRs. Additive consistency is one of the most commonly used property to measure the consistency of RPRs, with many methods developed to manage additive consistency of RPRs. To provide a clear perspective on additive consistency issues of RPRs, this paper reviews the consistency measurements of the different types of RPRs. Then, consistency-driven decision making and information fusion methods are also reviewed and classified into four main types: consistency improving methods; consistency-based methods to manage incomplete RPRs; consistency control in consensus decision making methods; and consistency-driven linguistic decision making methods. Finally, with respect to insights gained from prior researches, further directions for the research are proposed
    corecore