93,901 research outputs found

    Integrating planning, execution, and learning

    Get PDF
    To achieve the goal of building an autonomous agent, the usually disjoint capabilities of planning, execution, and learning must be used together. An architecture, called MAX, within which cognitive capabilities can be purposefully and intelligently integrated is described. The architecture supports the codification of capabilities as explicit knowledge that can be reasoned about. In addition, specific problem solving, learning, and integration knowledge is developed

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    An AI-Based Goal-Oriented Agent for Advanced On-Board Automation

    Get PDF
    In the context of fierce competition arising in the space economy, the number of satellites and constellations that will be placed in orbit is set to increase considerably in the upcoming years. In such a dynamic environment, raising the autonomy level of the next space missions is key to maintaining a competitive edge in terms of the scientific, technological, and commercial outcome. We propose the adoption of an AI-based autonomous agent aiming to fully enable spacecraft’s goal-oriented autonomy. The implemented cognitive architecture collects input starting from the sensing of the surrounding operating environment and defines a low-level schedule of tasks that will be carried out throughout the specified horizon. Furthermore, the agent provides a planner module designed to find optimal solutions that maximize the outcome of the pursued objective goal. The autonomous loop is closed by comparing the expected outcome of these scheduled tasks against the real environment measurements. The entire algorithmic pipeline was tested in a simulated operational environment, specifically developed for replicating inputs and resources relative to Earth Observation missions. The autonomous reasoning agent was evaluated against the classical, non-autonomous, mission control approach, considering both the quantity and the quality of collected observation data in addition to the quantity of the observation opportunities exploited throughout the simulation time. The preliminary simulation results point out that the adoption of our software agent enhances dramatically the effectiveness of the entire mission, increasing and optimizing in-orbit activities, on the one hand, reducing events\u27 response latency (opportunities, failures, malfunctioning, etc.) on the other. In the presentation, we will cover the description of the high-level algorithmic structure of the proposed goal-oriented reasoning model, as well as a brief explanation of each internal module’s contribution to the overall agent’s architecture. Besides, an overview of the parameters processed as input and the expected algorithms\u27 output will be provided, to contextualize the placement of the proposed solution. Finally, an Earth Observation use case will be used as the benchmark to test the performances of the proposed approach against the classical one, highlighting promising conclusions regarding our autonomous agent’s adoption

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    From SMART to agent systems development

    Get PDF
    In order for agent-oriented software engineering to prove effective it must use principled notions of agents and enabling specification and reasoning, while still considering routes to practical implementation. This paper deals with the issue of individual agent specification and construction, departing from the conceptual basis provided by the SMART agent framework. SMART offers a descriptive specification of an agent architecture but omits consideration of issues relating to construction and control. In response, we introduce two new views to complement SMART: a behavioural specification and a structural specification which, together, determine the components that make up an agent, and how they operate. In this way, we move from abstract agent system specification to practical implementation. These three aspects are combined to create an agent construction model, actSMART, which is then used to define the AgentSpeak(L) architecture in order to illustrate the application of actSMART
    corecore