3,018 research outputs found

    Tele-operated high speed anthropomorphic dextrous hands with object shape and texture identification

    Get PDF
    This paper reports on the development of two number of robotic hands have been developed which focus on tele-operated high speed anthropomorphic dextrous robotic hands. The aim of developing these hands was to achieve a system that seamlessly interfaced between humans and robots. To provide sensory feedback, to a remote operator tactile sensors were developed to be mounted on the robotic hands. Two systems were developed, the first, being a skin sensor capable of shape reconstruction placed on the palm of the hand to feed back the shape of objects grasped and the second is a highly sensitive tactile array for surface texture identification

    Sensory substitution for space gloves and for space robots

    Get PDF
    Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch

    Development of an intelligent object for grasp and manipulation research

    Get PDF
    KÔiva R, Haschke R, Ritter H. Development of an intelligent object for grasp and manipulation research. Presented at the ICAR 2011, Tallinn, Estonia.In this paper we introduce a novel device, called iObject, which is equipped with tactile and motion tracking sensors that allow for the evaluation of human and robot grasping and manipulation actions. Contact location and contact force, object acceleration in space (6D) and orientation relative to the earth (3D magnetometer) are measured and transmitted wirelessly over a Bluetooth connection. By allowing human-human, human-robot and robot-robot comparisons to be made, iObject is a versatile tool for studying manual interaction. To demonstrate the efficiency and flexibility of iObject for the study of bimanual interactions, we report on a physiological experiment and evaluate the main parameters of the considered dual-handed manipulation task

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    A stroking device for spatially separated couples

    Get PDF
    In this paper we present a device to support the communication of couples in long-distance relationships. While a synchronous exchange of factual information over distance is supported by telephone, e-mail and chat-systems, the transmission of nonverbal aspects of communication is still unsatisfactory. Videocalls let us see the partners’ facial expression in real time. However, to experience a more intimate conversation physical closeness is needed. Stroking while holding hands is a special and emotional gesture for couples. Hence, we developed a device that enables couples to exchange the physical gesture of stroking regardless of distance and location. The device allows both sending and receiving. A user test supported our concept and provided new insights for future development

    Wearable performance

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2009 Taylor & FrancisWearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment. Wearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment

    Neuromorphic vibrotactile stimulation of fingertips for encoding object stiffness in telepresence sensory substitution and augmentation applications

    Get PDF
    We present a tactile telepresence system for real-time transmission of information about object stiffness to the human fingertips. Experimental tests were performed across two laboratories (Italy and Ireland). In the Italian laboratory, a mechatronic sensing platform indented different rubber samples. Information about rubber stiffness was converted into on-off events using a neuronal spiking model and sent to a vibrotactile glove in the Irish laboratory. Participants discriminated the variation of the stiffness of stimuli according to a two-alternative forced choice protocol. Stiffness discrimination was based on the variation of the temporal pattern of spikes generated during the indentation of the rubber samples. The results suggest that vibrotactile stimulation can effectively simulate surface stiffness when using neuronal spiking models to trigger vibrations in the haptic interface. Specifically, fractional variations of stiffness down to 0.67 were significantly discriminated with the developed neuromorphic haptic interface. This is a performance comparable, though slightly worse, to the threshold obtained in a benchmark experiment evaluating the same set of stimuli naturally with the own hand. Our paper presents a bioinspired method for delivering sensory feedback about object properties to human skin based on contingency-mimetic neuronal models, and can be useful for the design of high performance haptic devices
    • 

    corecore