176 research outputs found

    Reconstruction of Phonated Speech from Whispers Using Formant-Derived Plausible Pitch Modulation

    Get PDF
    Whispering is a natural, unphonated, secondary aspect of speech communications for most people. However, it is the primary mechanism of communications for some speakers who have impaired voice production mechanisms, such as partial laryngectomees, as well as for those prescribed voice rest, which often follows surgery or damage to the larynx. Unlike most people, who choose when to whisper and when not to, these speakers may have little choice but to rely on whispers for much of their daily vocal interaction. Even though most speakers will whisper at times, and some speakers can only whisper, the majority of today’s computational speech technology systems assume or require phonated speech. This article considers conversion of whispers into natural-sounding phonated speech as a noninvasive prosthetic aid for people with voice impairments who can only whisper. As a by-product, the technique is also useful for unimpaired speakers who choose to whisper. Speech reconstruction systems can be classified into those requiring training and those that do not. Among the latter, a recent parametric reconstruction framework is explored and then enhanced through a refined estimation of plausible pitch from weighted formant differences. The improved reconstruction framework, with proposed formant-derived artificial pitch modulation, is validated through subjective and objective comparison tests alongside state-of-the-art alternatives

    Methods for speaking style conversion from normal speech to high vocal effort speech

    Get PDF
    This thesis deals with vocal-effort-focused speaking style conversion (SSC). Specifically, we studied two topics on conversion of normal speech to high vocal effort. The first topic involves the conversion of normal speech to shouted speech. We employed this conversion in a speaker recognition system with vocal effort mismatch between test and enrollment utterances (shouted speech vs. normal speech). The mismatch causes a degradation of the system's speaker identification performance. As solution, we proposed a SSC system that included a novel spectral mapping, used along a statistical mapping technique, to transform the mel-frequency spectral energies of normal speech enrollment utterances towards their counterparts in shouted speech. We evaluated the proposed solution by comparing speaker identification rates for a state-of-the-art i-vector-based speaker recognition system, with and without applying SSC to the enrollment utterances. Our results showed that applying the proposed SSC pre-processing to the enrollment data improves considerably the speaker identification rates. The second topic involves a normal-to-Lombard speech conversion. We proposed a vocoder-based parametric SSC system to perform the conversion. This system first extracts speech features using the vocoder. Next, a mapping technique, robust to data scarcity, maps the features. Finally, the vocoder synthesizes the mapped features into speech. We used two vocoders in the conversion system, for comparison: a glottal vocoder and the widely used STRAIGHT. We assessed the converted speech from the two vocoder cases with two subjective listening tests that measured similarity to Lombard speech and naturalness. The similarity subjective test showed that, for both vocoder cases, our proposed SSC system was able to convert normal speech to Lombard speech. The naturalness subjective test showed that the converted samples using the glottal vocoder were clearly more natural than those obtained with STRAIGHT

    A silent speech system based on permanent magnet articulography and direct synthesis

    Get PDF
    In this paper we present a silent speech interface (SSI) system aimed at restoring speech communication for individuals who have lost their voice due to laryngectomy or diseases affecting the vocal folds. In the proposed system, articulatory data captured from the lips and tongue using permanent magnet articulography (PMA) are converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings of PMA and audio signals acquired before laryngectomy. The transformation is represented using a mixture of factor analysers, which is a generative model that allows us to efficiently model non-linear behaviour and perform dimensionality reduction at the same time. The learned transformation is then deployed during normal usage of the SSI to restore the acoustic speech signal associated with the captured PMA data. The proposed system is evaluated using objective quality measures and listening tests on two databases containing PMA and audio recordings for normal speakers. Results show that it is possible to reconstruct speech from articulator movements captured by an unobtrusive technique without an intermediate recognition step. The SSI is capable of producing speech of sufficient intelligibility and naturalness that the speaker is clearly identifiable, but problems remain in scaling up the process to function consistently for phonetically rich vocabularies

    EMG-to-Speech: Direct Generation of Speech from Facial Electromyographic Signals

    Get PDF
    The general objective of this work is the design, implementation, improvement and evaluation of a system that uses surface electromyographic (EMG) signals and directly synthesizes an audible speech output: EMG-to-speech
    • …
    corecore