10,226 research outputs found

    Globe-hopping

    Get PDF
    We consider versions of the grasshopper problem (Goulko & Kent 2017 Proc. R. Soc. A473, 20170494) on the circle and the sphere, which are relevant to Bell inequalities. For a circle of circumference 2π, we show that for unconstrained lawns of any length and arbitrary jump lengths, the supremum of the probability for the grasshopper’s jump to stay on the lawn is one. For antipodal lawns, which by definition contain precisely one of each pair of opposite points and have length π, we show this is true except when the jump length ϕ is of the form π(p/q) with p, q coprime and p odd. For these jump lengths, we show the optimal probability is 1 − 1/q and construct optimal lawns. For a pair of antipodal lawns, we show that the optimal probability of jumping from one onto the other is 1 − 1/q for p, q coprime, p odd and q even, and one in all other cases. For an antipodal lawn on the sphere, it is known (Kent & Pitalúa-García 2014 Phys. Rev. A90, 062124) that if ϕ = π/q, where q∈N, then the optimal retention probability of 1 − 1/q for the grasshopper’s jump is provided by a hemispherical lawn. We show that in all other cases where 0 < ϕ < π/2, hemispherical lawns are not optimal, disproving the hemispherical colouring maximality hypotheses (Kent & Pitalúa-García 2014 Phys. Rev. A90, 062124). We discuss the implications for Bell experiments and related cryptographic tests

    In situ method for power re-equalization of wavelength pulses inside of OCDMA codes

    Get PDF
    A simple in-situ method to equalize power among individual wavelengths pulses representing two-dimensional wavelength-hopping time-spreading OCDMA code originally generated by a fibre Bragg grating-based OCDMA encoder is presented. Experimental data obtained in a field-based multiuser OCDMA testbed shows that applying this method results in system performance enhancements which was demonstrated by observing improved bit error rate (BER) during the field trials

    Evidence of robust 2D transport and Efros-Shklovskii variable range hopping in disordered topological insulator (Bi2Se3) nanowires

    Get PDF
    We report the experimental observation of variable range hopping conduction in focused-ion-beam (FIB) fabricated ultra-narrow nanowires of topological insulator (Bi2Se3). The value of the exponent in the hopping equation was extracted as ~ 1/2 for different widths of nanowires, which is the proof of the presence of Efros-Shklovskii hopping transport mechanism in a strongly disordered system. High localization lengths (0.5nm, 20nm) were calculated for the devices. A careful analysis of the temperature dependent fluctuations present in the magnetoresistance curves, using the standard Universal Conductance Fluctuation theory, indicates the presence of 2D topological surface states. Also, the surface state contribution to the conductance was found very close to one conductance quantum. We believe that our experimental findings shed light on the understanding of quantum transport in disordered topological insulator based nanostructures.Comment: 14pages, 4 figure

    Dielectric properties of Li2O-3B2O3 glasses

    Full text link
    The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the transparent glasses in the composition Li2O-3B2O3 (LBO) were investigated in the 100 Hz- 10 MHz frequency range. The dielectric constant and the loss in the low frequency regime were electrode material dependent. Dielectric and electrical relaxations were respectively analyzed using the Cole-Cole and electric modulus formalisms. The dielectric relaxation mechanism was discussed in the framework of electrode and charge carrier (hopping of the ions) related polarization using generalized Cole-Cole expression. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was 0.80 \pm 0.02 eV, which was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. Temperature dependent behavior of the frequency exponent (n) suggested that the correlated barrier hopping model was the most apposite to rationalize the electrical transport phenomenon in Li2O-3B2O3 glasses. These glasses on heating at 933 K/10h resulted in the known non-linear optical phase LiB3O5.Comment: 32 pages, 13 figure

    Looking up: the 2008 season at London's Globe Theatre

    Get PDF

    Graphene via large N I: Renormalization

    Full text link
    We analyze the competing effects of moderate to strong Coulomb electron-electron interactions and weak quenched disorder in graphene. Using a one-loop renormalization group calculation controlled within the large-N approximation, we demonstrate that, at successively lower energy (temperature or chemical potential) scales, a type of non-Abelian vector potential disorder always asserts itself as the dominant elastic scattering mechanism for generic short-ranged microscopic defect distributions. Vector potential disorder is tied to both elastic lattice deformations ("ripples") and topological lattice defects. We identify several well-defined scaling regimes, for which we provide scaling predictions for the electrical conductivity and thermopower, valid when the inelastic lifetime due to interactions exceeds the elastic lifetime due to disorder. Coulomb interaction effects should figure strongly into the physics of suspended graphene films, where rs > 1; we expect vector potential disorder to play an important role in the description of transport in such films.Comment: 25 pages, 21 figure
    corecore