2,244 research outputs found

    Stochastic Asymptotic Stabilizers for Deterministic Input-Affine Systems based on Stochastic Control Lyapunov Functions

    Full text link
    In this paper, a stochastic asymptotic stabilization method is proposed for deterministic input-affine control systems, which are randomized by including Gaussian white noises in control inputs. The sufficient condition is derived for the diffucion coefficients so that there exist stochastic control Lyapunov functions for the systems. To illustrate the usefulness of the sufficient condition, the authors propose the stochastic continuous feedback law, which makes the origin of the Brockett integrator become globally asymptotically stable in probability.Comment: A preliminary version of this paper appeared in the Proceedings of the 48th Annual IEEE Conference on Decision and Control [14

    Lyapunov stabilizability of controlled diffusions via a superoptimality principle for viscosity solutions

    Full text link
    We prove optimality principles for semicontinuous bounded viscosity solutions of Hamilton-Jacobi-Bellman equations. In particular we provide a representation formula for viscosity supersolutions as value functions of suitable obstacle control problems. This result is applied to extend the Lyapunov direct method for stability to controlled Ito stochastic differential equations. We define the appropriate concept of Lyapunov function to study the stochastic open loop stabilizability in probability and the local and global asymptotic stabilizability (or asymptotic controllability). Finally we illustrate the theory with some examples.Comment: 22 page

    Adaptive Backstepping Control for Fractional-Order Nonlinear Systems with External Disturbance and Uncertain Parameters Using Smooth Control

    Full text link
    In this paper, we consider controlling a class of single-input-single-output (SISO) commensurate fractional-order nonlinear systems with parametric uncertainty and external disturbance. Based on backstepping approach, an adaptive controller is proposed with adaptive laws that are used to estimate the unknown system parameters and the bound of unknown disturbance. Instead of using discontinuous functions such as the sign\mathrm{sign} function, an auxiliary function is employed to obtain a smooth control input that is still able to achieve perfect tracking in the presence of bounded disturbances. Indeed, global boundedness of all closed-loop signals and asymptotic perfect tracking of fractional-order system output to a given reference trajectory are proved by using fractional directed Lyapunov method. To verify the effectiveness of the proposed control method, simulation examples are presented.Comment: Accepted by the IEEE Transactions on Systems, Man and Cybernetics: Systems with Minor Revision

    Further Constructions of Control-Lyapunov Functions and Stabilizing Feedbacks for Systems Satisfying the Jurdjevic-Quinn Conditions

    Full text link
    For a broad class of nonlinear systems, we construct smooth control-Lyapunov functions whose derivatives along the trajectories of the systems can be made negative definite by smooth control laws that are arbitrarily small in norm. We assume our systems satisfy appropriate generalizations of the Jurdjevic-Quinn conditions. We also design state feedbacks of arbitrarily small norm that render our systems integral-input-to-state stable to actuator errors.Comment: 15 pages, 0 figures, accepted for publication in IEEE Transactions on Automatic Control in October 200
    corecore