833 research outputs found

    Convexification of a 3-D coefficient inverse scattering problem

    Full text link
    A version of the so-called "convexification" numerical method for a coefficient inverse scattering problem for the 3D Hemholtz equation is developed analytically and tested numerically. Backscattering data are used, which result from a single direction of the propagation of the incident plane wave on an interval of frequencies. The method converges globally. The idea is to construct a weighted Tikhonov-like functional. The key element of this functional is the presence of the so-called Carleman Weight Function (CWF). This is the function which is involved in the Carleman estimate for the Laplace operator. This functional is strictly convex on any appropriate ball in a Hilbert space for an appropriate choice of the parameters of the CWF. Thus, both the absence of local minima and convergence of minimizers to the exact solution are guaranteed. Numerical tests demonstrate a good performance of the resulting algorithm. Unlikeprevious the so-called tail functions globally convergent method, we neither do not impose the smallness assumption of the interval of wavenumbers, nor we do not iterate with respect to the so-called tail functions.Comment: 27 pages, 6 figure

    A globally convergent method for a 3-D inverse medium problem for the generalized Helmholtz equation

    Full text link
    A 3-D inverse medium problem in the frequency domain is considered. Another name for this problem is Coefficient Inverse Problem. The goal is to reconstruct spatially distributed dielectric constants from scattering data. Potential applications are in detection and identification of explosive-like targets. A single incident plane wave and multiple frequencies are used. A new numerical method is proposed. A theorem is proved, which claims that a small neigborhood of the exact solution of that problem is reached by this method without any advanced knowledge of that neighborhood. We call this property of that numerical method "global convergence". Results of numerical experiments for the case of the backscattering data are presented

    A coefficient inverse problem with a single measurement of phaseless scattering data

    Full text link
    This paper is concerned with a numerical method for a 3D coefficient inverse problem with phaseless scattering data. These are multi-frequency data generated by a single direction of the incident plane wave. Our numerical procedure consists of two stages. The first stage aims to reconstruct the (approximate) scattered field at the plane of measurements from its intensity. We present an algorithm for the reconstruction process and prove a uniqueness result of this reconstruction. After obtaining the approximate scattered field, we exploit a newly developed globally convergent numerical method to solve the coefficient inverse problem with the phased scattering data. The latter is the second stage of our algorithm. Numerical examples are presented to demonstrate the performance of our method. Finally, we present a numerical study which aims to show that, under a certain assumption, the solution of the scattering problem for the 3D scalar Helmholtz equation can be used to approximate the component of the electric field which was originally incident upon the medium

    Convergence of a series associated with the convexification method for coefficient inverse problems

    Full text link
    This paper is concerned with the convergence of a series associated with a certain version of the convexification method. That version has been recently developed by the research group of the first author for solving coefficient inverse problems. The convexification method aims to construct a globally convex Tikhonov-like functional with a Carleman Weight Function in it. In the previous works the construction of the strictly convex weighted Tikhonov-like functional assumes a truncated Fourier series (i.e. a finite series instead of an infinite one) for a function generated by the total wave field. In this paper we prove a convergence property for this truncated Fourier series approximation. More precisely, we show that the residual of the approximate PDE obtained by using the truncated Fourier series tends to zero in L2L^{2} as the truncation index in the truncated Fourier series tends to infinity. The proof relies on a convergence result in the H1H^{1}-norm for a sequence of L2L^{2}-orthogonal projections on finite-dimensional subspaces spanned by elements of a special Fourier basis. However, due to the ill-posed nature of coefficient inverse problems, we cannot prove that the solution of that approximate PDE, which results from the minimization of that Tikhonov-like functional, converges to the correct solution.Comment: 15 page

    Convexification and experimental data for a 3D inverse scattering problem with the moving point source

    Full text link
    Inverse scattering problems of the reconstructions of physical properties of a medium from boundary measurements are substantially challenging ones. This work aims to verify the performance on experimental data of a newly developed convexification method for a 3D coefficient inverse problem for the case of objects buried in a sandbox a fixed frequency and the point source moving along an interval of a straight line. Using a special Fourier basis, the method of this work strongly relies on a new derivation of a boundary value problem for a system of coupled quasilinear elliptic equations. This problem, in turn, is solved via the minimization of a Tikhonov-like functional weighted by a Carleman Weight Function. The global convergence of the numerical procedure is established analytically. The numerical verification is performed using experimental data, which are raw backscatter data of the electric field. These data were collected using a microwave scattering facility at The University of North Carolina at Charlotte.Comment: 35 pages, 22 figures, 2 table

    An inverse problem of a simultaneous reconstruction of the dielectric constant and conductivity from experimental backscattering data

    Full text link
    This report extends our recent progress in tackling a challenging 3D inverse scattering problem governed by the Helmholtz equation. Our target application is to reconstruct dielectric constants, electric conductivities and shapes of front surfaces of objects buried very closely under the ground. These objects mimic explosives, like, e.g., antipersonnel land mines and improvised explosive devices. We solve a coefficient inverse problem with the backscattering data generated by a moving source at a fixed frequency. This scenario has been studied so far by our newly developed convexification method that consists in a new derivation of a boundary value problem for a coupled quasilinear elliptic system. However, in our previous work only the unknown dielectric constants of objects and shapes of their front surfaces were calculated. Unlike this, in the current work performance of our numerical convexification algorithm is verified for the case when the dielectric constants, the electric conductivities and those shapes of objects are unknown. By running several tests with experimentally collected backscattering data, we find that we can accurately image both the dielectric constants and shapes of targets of interests including a challenging case of targets with voids. The computed electrical conductivity serves for reliably distinguishing conductive and non-conductive objects. The global convergence of our numerical procedure is shortly revisited.Comment: Coefficient inverse problem, multiple point sources, experimental data, Carleman weight, global convergence, Fourier series. arXiv admin note: text overlap with arXiv:2003.1151

    The gradient descent method for the convexification to solve boundary value problems of quasi-linear PDEs and a coefficient inverse problem

    Full text link
    We study the global convergence of the gradient descent method of the minimization of strictly convex functionals on an open and bounded set of a Hilbert space. Such results are unknown for this type of sets, unlike the case of the entire Hilbert space. The proof of this convergence is based on the classical contraction principle. Then, we use our result to establish a general framework to numerically solve boundary value problems for quasi-linear partial differential equations (PDEs) with noisy Cauchy data. The procedure involves the use of Carleman weight functions to convexify a cost functional arising from the given boundary value problem and thus to ensure the convergence of the gradient descent method above. We prove the global convergence of the method as the noise tends to 0. The convergence rate is Lipschitz. Next, we apply this method to solve a highly nonlinear and severely ill-posed coefficient inverse problem, which is the so-called back scattering inverse problem. This problem has many real-world applications. Numerical examples are presented

    Convexification for a 3D inverse scattering problem with the moving point source

    Full text link
    For the first time, we develop in this paper the globally convergent convexification numerical method for a Coefficient Inverse Problem for the 3D Helmholtz equation for the case when the backscattering data are generated by a point source running along an interval of a straight line and the wavenumber is fixed. Thus, by varying the wavenumber, one can reconstruct the dielectric constant depending not only on spatial variables but the wavenumber (i.e. frequency) as well. Our approach relies on a new derivation of a boundary value problem for a system of coupled quasilinear elliptic partial differential equations. This is done via an application of a special truncated Fourier-like method. First, we prove the Lipschitz stability estimate for this problem via a Carleman estimate. Next, using the Carleman Weight Function generated by that estimate, we construct a globally strictly convex cost functional and prove the global convergence to the exact solution of the gradient projection method. Finally, our theoretical finding is verified via several numerical tests with computationally simulated data. These tests demonstrate that we can accurately recover all three important components of targets of interest: locations, shapes and dielectric constants. In particular, large target/background contrasts in dielectric constants (up to 10:1) can be accurately calculated.Comment: 32 pages; 11 figures; 2 table

    Convexification for an Inverse Problem for a 1D Wave Equation with Experimental Data

    Full text link
    The forward problem here is the Cauchy problem for a 1D hyperbolic PDE with a variable coefficient in the principal part of the operator. That coefficient is the spatially distributed dielectric constant. The inverse problem consists of the recovery of that dielectric constant from backscattering boundary measurements. The data depend on one variable, which is time. To address this problem, a new version of the convexification method is analytically developed. The theory guarantees the global convergence of this method. Numerical testing is conducted for both computationally simulated and experimental data. Experimental data, which are collected in the field, mimic the problem of the recovery of the spatially distributed dielectric constants of antipersonnel land mines and improvised explosive devices.Comment: 28 pages, 7 figures, to be published in SIAM Journal on Imaging Sciences (SIIMS

    Convexification numerical algorithm for a 2D inverse scattering problem with backscatter data

    Full text link
    This paper is concerned with the inverse scattering problem which aims to determine the spatially distributed dielectric constant coefficient of the 2D Helmholtz equation from multifrequency backscatter data associated with a single direction of the incident plane wave. We propose a globally convergent convexification numerical algorithm to solve this nonlinear and ill-posed inverse problem. The key advantage of our method over conventional optimization approaches is that it does not require a good first guess about the solution. First, we eliminate the coefficient from the Helmholtz equation using a change of variables. Next, using a truncated expansion with respect to a special Fourier basis, we approximately reformulate the inverse problem as a system of quasilinear elliptic PDEs, which can be numerically solved by a weighted quasi-reversibility approach. The cost functional for the weighted quasi-reversibility method is constructed as a Tikhonov-like functional that involves a Carleman Weight Function. Our numerical study shows that, using a version of the gradient descent method, one can find the minimizer of this Tikhonov-like functional without any advanced \emph{a priori} knowledge about it.Comment: 25 page
    • …
    corecore