69 research outputs found

    Accelerating Globally Optimal Consensus Maximization in Geometric Vision

    Full text link
    Branch-and-bound-based consensus maximization stands out due to its important ability of retrieving the globally optimal solution to outlier-affected geometric problems. However, while the discovery of such solutions caries high scientific value, its application in practical scenarios is often prohibited by its computational complexity growing exponentially as a function of the dimensionality of the problem at hand. In this work, we convey a novel, general technique that allows us to branch over an nβˆ’1n-1 dimensional space for an n-dimensional problem. The remaining degree of freedom can be solved globally optimally within each bound calculation by applying the efficient interval stabbing technique. While each individual bound derivation is harder to compute owing to the additional need for solving a sorting problem, the reduced number of intervals and tighter bounds in practice lead to a significant reduction in the overall number of required iterations. Besides an abstract introduction of the approach, we present applications to three fundamental geometric computer vision problems: camera resectioning, relative camera pose estimation, and point set registration. Through our exhaustive tests, we demonstrate significant speed-up factors at times exceeding two orders of magnitude, thereby increasing the viability of globally optimal consensus maximizers in online application scenarios

    Novel Camera Architectures for Localization and Mapping on Intelligent Mobile Platforms

    Get PDF
    Self-localization and environment mapping play a very important role in many robotics application such as autonomous driving and mixed reality consumer products. Although the most powerful solutions rely on a multitude of sensors including lidars and camera, the community maintains a high interest in developing cost-effective, purely vision-based localization and mapping approaches. The core problem of standard vision-only solutions is accuracy and robustness, especially in challenging visual conditions. The thesis aims to introduce new solutions to localization and mapping problems on intelligent mobile devices by taking advantages of novel camera architectures. The thesis investigates on using surround-view multi-camera systems, which combine the benefits of omni-directional measurements with a sufficient baseline for producing measurements in metric scale, and event cameras, that perform well under challenging illumination conditions and have high temporal resolutions. The thesis starts by looking into the motion estimation framework with multi-perspective camera systems. The framework could be divided into two sub-parts, a front-end module that initializes motion and estimates absolute pose after bootstrapping, and a back-end module that refines the estimate over a larger-scale sequence. First, the thesis proposes a complete real-time pipeline for visual odometry with non-overlapping, multi-perspective camera systems, and in particular presents a solution to the scale initialization problem, in order to solve the unobservability of metric scale under degenerate cases with such systems. Second, the thesis focuses on the further improvement of front-end relative pose estimation for vehicle-mounted surround-view multi-camera systems. It presents a new, reliable solution able to handle all kinds of relative displacements in the plane despite the possibly non-holonomic characteristics, and furthermore introduces a novel two-view optimization scheme which minimizes a geometrically relevant error without relying on 3D points related optimization variables. Third, the thesis explores the continues-time parametrization for exact modelling of non-holonomic ground vehicle trajectories in the back-end optimization of visual SLAM pipeline. It demonstrates the use of B-splines for an exact imposition of smooth, non-holonomic trajectories inside the 6 DoF bundle adjustment, and show that a significant improvement in robustness and accuracy in degrading visual conditions can be achieved. In order to deal with challenges in scenarios with high dynamics, low texture distinctiveness, or challenging illumination conditions, the thesis focuses on the solution to localization and mapping problem on Autonomous Ground Vehicle(AGV) using event cameras. Inspired by the time-continuous parametrizations of image warping functions introduced by previous works, the thesis proposes two new algorithms to tackle several motion estimation problems by performing contrast maximization approach. It firstly looks at the fronto-parallel motion estimation of an event camera, in stark contrast to the prior art, a globally optimal solution to this motion estimation problem is derived by using a branch-and-bound optimization scheme. Then, the thesis introduces a new solution to handle the localization and mapping problem of single event camera by continuous ray warping and volumetric contrast maximization, which can perform joint optimization over motion and structure for cameras exerting both translational and rotational displacements in an arbitrarily structured environment. The present thesis thus makes important contributions on both front-end and back-end of SLAM pipelines based on novel, promising camera architectures
    • …
    corecore