17,277 research outputs found

    Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives

    Full text link
    In this paper, we address the global stabilization of chains of integrators by means of a bounded static feedback law whose p first time derivatives are bounded. Our construction is based on the technique of nested saturations introduced by Teel. We show that the control amplitude and the maximum value of its p first derivatives can be imposed below any prescribed values. Our results are illustrated by the stabilization of the third order integrator on the feedback and its first two derivatives

    Properties of recoverable region and semi-global stabilization in recoverable region for linear systems subject to constraints

    Get PDF
    This paper investigates time-invariant linear systems subject to input and state constraints. It is shown that the recoverable region (which is the largest domain of attraction that is theoretically achievable) can be semiglobally stabilized by continuous nonlinear feedbacks while satisfying the constraints. Moreover, a reduction technique is presented which shows, when trying to compute the recoverable region, that we only need to compute the recoverable region for a system of lower dimension which generally leads to a considerable simplification in the computational effort

    Optimal Stabilization using Lyapunov Measures

    Full text link
    Numerical solutions for the optimal feedback stabilization of discrete time dynamical systems is the focus of this paper. Set-theoretic notion of almost everywhere stability introduced by the Lyapunov measure, weaker than conventional Lyapunov function-based stabilization methods, is used for optimal stabilization. The linear Perron-Frobenius transfer operator is used to pose the optimal stabilization problem as an infinite dimensional linear program. Set-oriented numerical methods are used to obtain the finite dimensional approximation of the linear program. We provide conditions for the existence of stabilizing feedback controls and show the optimal stabilizing feedback control can be obtained as a solution of a finite dimensional linear program. The approach is demonstrated on stabilization of period two orbit in a controlled standard map

    Robust output stabilization: improving performance via supervisory control

    Full text link
    We analyze robust stability, in an input-output sense, of switched stable systems. The primary goal (and contribution) of this paper is to design switching strategies to guarantee that input-output stable systems remain so under switching. We propose two types of {\em supervisors}: dwell-time and hysteresis based. While our results are stated as tools of analysis they serve a clear purpose in design: to improve performance. In that respect, we illustrate the utility of our findings by concisely addressing a problem of observer design for Lur'e-type systems; in particular, we design a hybrid observer that ensures ``fast'' convergence with ``low'' overshoots. As a second application of our main results we use hybrid control in the context of synchronization of chaotic oscillators with the goal of reducing control effort; an originality of the hybrid control in this context with respect to other contributions in the area is that it exploits the structure and chaotic behavior (boundedness of solutions) of Lorenz oscillators.Comment: Short version submitted to IEEE TA

    Finite-parameter feedback control for stabilizing the complex Ginzburg-Landau equation

    Get PDF
    In this paper, we prove the exponential stabilization of solutions for complex Ginzburg-Landau equations using finite-parameter feedback control algorithms, which employ finitely many volume elements, Fourier modes or nodal observables (controllers). We also propose a feedback control for steering solutions of the Ginzburg-Landau equation to a desired solution of the non-controlled system. In this latter problem, the feedback controller also involves the measurement of the solution to the non-controlled system.Comment: 20 page
    • 

    corecore