296 research outputs found

    Traveling wave phenomena in a nonlocal dispersal predator-prey system with the Beddington-DeAngelis functional response and harvesting

    Get PDF
    This paper is devoted to studying the existence and nonexistence of traveling wave solution for a nonlocal dispersal delayed predator-prey system with the Beddington-DeAngelis functional response and harvesting. By constructing the suitable upper-lower solutions and applying Schauder\u27s fixed point theorem, we show that there exists a positive constant c∗ such that the system possesses a traveling wave solution for any given c\u3ec∗. Moreover, the asymptotic behavior of traveling wave solution at infinity is obtained by the contracting rectangles method. The existence of traveling wave solution for c=c∗ is established by means of Corduneanu\u27s theorem. The nonexistence of traveling wave solution in the case of

    Advanced Nonlinear Dynamics of Population Biology and Epidemiology

    Get PDF
    abstract: Modern biology and epidemiology have become more and more driven by the need of mathematical models and theory to elucidate general phenomena arising from the complexity of interactions on the numerous spatial, temporal, and hierarchical scales at which biological systems operate and diseases spread. Epidemic modeling and study of disease spread such as gonorrhea, HIV/AIDS, BSE, foot and mouth disease, measles, and rubella have had an impact on public health policy around the world which includes the United Kingdom, The Netherlands, Canada, and the United States. A wide variety of modeling approaches are involved in building up suitable models. Ordinary differential equation models, partial differential equation models, delay differential equation models, stochastic differential equation models, difference equation models, and nonautonomous models are examples of modeling approaches that are useful and capable of providing applicable strategies for the coexistence and conservation of endangered species, to prevent the overexploitation of natural resources, to control disease’s outbreak, and to make optimal dosing polices for the drug administration, and so forth.View the article as published at https://www.hindawi.com/journals/aaa/2014/214514

    Coexistence and optimal control problems for a degenerate predator-prey model

    Get PDF
    In this paper we present a predator-prey mathematical model for two biological populations which dislike crowding. The model consists of a system of two degenerate parabolic equations with nonlocal terms and drifts. We provide conditions on the system ensuring the periodic coexistence, namely the existence of two non-trivial non-negative periodic solutions representing the densities of the two populations. We assume that the predator species is harvested if its density exceeds a given threshold. A minimization problem for a cost functional associated with this process and with some other significant parameters of the model is also considered. \ua9 2010 Elsevier Inc
    • …
    corecore