70,008 research outputs found

    Poisson multi-Bernoulli mixture trackers: continuity through random finite sets of trajectories

    Full text link
    The Poisson multi-Bernoulli mixture (PMBM) is an unlabelled multi-target distribution for which the prediction and update are closed. It has a Poisson birth process, and new Bernoulli components are generated on each new measurement as a part of the Bayesian measurement update. The PMBM filter is similar to the multiple hypothesis tracker (MHT), but seemingly does not provide explicit continuity between time steps. This paper considers a recently developed formulation of the multi-target tracking problem as a random finite set (RFS) of trajectories, and derives two trajectory RFS filters, called PMBM trackers. The PMBM trackers efficiently estimate the set of trajectories, and share hypothesis structure with the PMBM filter. By showing that the prediction and update in the PMBM filter can be viewed as an efficient method for calculating the time marginals of the RFS of trajectories, continuity in the same sense as MHT is established for the PMBM filter

    Poisson multi-Bernoulli conjugate prior for multiple extended object filtering

    Full text link
    This paper presents a Poisson multi-Bernoulli mixture (PMBM) conjugate prior for multiple extended object filtering. A Poisson point process is used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture describes the distribution of the targets that have been detected. The prediction and update equations are presented for the standard transition density and measurement likelihood. Both the prediction and the update preserve the PMBM form of the density, and in this sense the PMBM density is a conjugate prior. However, the unknown data associations lead to an intractably large number of terms in the PMBM density, and approximations are necessary for tractability. A gamma Gaussian inverse Wishart implementation is presented, along with methods to handle the data association problem. A simulation study shows that the extended target PMBM filter performs well in comparison to the extended target d-GLMB and LMB filters. An experiment with Lidar data illustrates the benefit of tracking both detected and undetected targets

    Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA and association-based MeMBer

    Full text link
    Recent developments in random finite sets (RFSs) have yielded a variety of tracking methods that avoid data association. This paper derives a form of the full Bayes RFS filter and observes that data association is implicitly present, in a data structure similar to MHT. Subsequently, algorithms are obtained by approximating the distribution of associations. Two algorithms result: one nearly identical to JIPDA, and another related to the MeMBer filter. Both improve performance in challenging environments.Comment: Journal version at http://ieeexplore.ieee.org/document/7272821. Matlab code of simple implementation included with ancillary file

    Multisensor Poisson Multi-Bernoulli Filter for Joint Target-Sensor State Tracking

    Full text link
    In a typical multitarget tracking (MTT) scenario, the sensor state is either assumed known, or tracking is performed in the sensor's (relative) coordinate frame. This assumption does not hold when the sensor, e.g., an automotive radar, is mounted on a vehicle, and the target state should be represented in a global (absolute) coordinate frame. Then it is important to consider the uncertain location of the vehicle on which the sensor is mounted for MTT. In this paper, we present a multisensor low complexity Poisson multi-Bernoulli MTT filter, which jointly tracks the uncertain vehicle state and target states. Measurements collected by different sensors mounted on multiple vehicles with varying location uncertainty are incorporated sequentially based on the arrival of new sensor measurements. In doing so, targets observed from a sensor mounted on a well-localized vehicle reduce the state uncertainty of other poorly localized vehicles, provided that a common non-empty subset of targets is observed. A low complexity filter is obtained by approximations of the joint sensor-feature state density minimizing the Kullback-Leibler divergence (KLD). Results from synthetic as well as experimental measurement data, collected in a vehicle driving scenario, demonstrate the performance benefits of joint vehicle-target state tracking.Comment: 13 pages, 7 figure

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application
    • …
    corecore