1,789 research outputs found

    Global solar irradiation prediction using a multi-gene genetic programming approach

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.In this paper, a nonlinear symbolic regression technique using an evolutionary algorithm known as multi-gene genetic programming (MGGP) is applied for a data-driven modelling between the dependent and the independent variables. The technique is applied for modelling the measured global solar irradiation and validated through numerical simulations. The proposed modelling technique shows improved results over the fuzzy logic and artificial neural network (ANN) based approaches as attempted by contemporary researchers. The method proposed here results in nonlinear analytical expressions, unlike those with neural networks which is essentially a black box modelling approach. This additional flexibility is an advantage from the modelling perspective and helps to discern the important variables which affect the prediction. Due to the evolutionary nature of the algorithm, it is able to get out of local minima and converge to a global optimum unlike the back-propagation (BP) algorithm used for training neural networks. This results in a better percentage fit than the ones obtained using neural networks by contemporary researchers. Also a hold-out cross validation is done on the obtained genetic programming (GP) results which show that the results generalize well to new data and do not over-fit the training samples. The multi-gene GP results are compared with those, obtained using its single-gene version and also the same with four classical regression models in order to show the effectiveness of the adopted approach

    A Multi-Gene Genetic Programming Application for Predicting Students Failure at School

    Full text link
    Several efforts to predict student failure rate (SFR) at school accurately still remains a core problem area faced by many in the educational sector. The procedure for forecasting SFR are rigid and most often times require data scaling or conversion into binary form such as is the case of the logistic model which may lead to lose of information and effect size attenuation. Also, the high number of factors, incomplete and unbalanced dataset, and black boxing issues as in Artificial Neural Networks and Fuzzy logic systems exposes the need for more efficient tools. Currently the application of Genetic Programming (GP) holds great promises and has produced tremendous positive results in different sectors. In this regard, this study developed GPSFARPS, a software application to provide a robust solution to the prediction of SFR using an evolutionary algorithm known as multi-gene genetic programming. The approach is validated by feeding a testing data set to the evolved GP models. Result obtained from GPSFARPS simulations show its unique ability to evolve a suitable failure rate expression with a fast convergence at 30 generations from a maximum specified generation of 500. The multi-gene system was also able to minimize the evolved model expression and accurately predict student failure rate using a subset of the original expressionComment: 14 pages, 9 figures, Journal paper. arXiv admin note: text overlap with arXiv:1403.0623 by other author

    GPTIPS 2: an open-source software platform for symbolic data mining

    Full text link
    GPTIPS is a free, open source MATLAB based software platform for symbolic data mining (SDM). It uses a multigene variant of the biologically inspired machine learning method of genetic programming (MGGP) as the engine that drives the automatic model discovery process. Symbolic data mining is the process of extracting hidden, meaningful relationships from data in the form of symbolic equations. In contrast to other data-mining methods, the structural transparency of the generated predictive equations can give new insights into the physical systems or processes that generated the data. Furthermore, this transparency makes the models very easy to deploy outside of MATLAB. The rationale behind GPTIPS is to reduce the technical barriers to using, understanding, visualising and deploying GP based symbolic models of data, whilst at the same time remaining highly customisable and delivering robust numerical performance for power users. In this chapter, notable new features of the latest version of the software are discussed with these aims in mind. Additionally, a simplified variant of the MGGP high level gene crossover mechanism is proposed. It is demonstrated that the new functionality of GPTIPS 2 (a) facilitates the discovery of compact symbolic relationships from data using multiple approaches, e.g. using novel gene-centric visualisation analysis to mitigate horizontal bloat and reduce complexity in multigene symbolic regression models (b) provides numerous methods for visualising the properties of symbolic models (c) emphasises the generation of graphically navigable libraries of models that are optimal in terms of the Pareto trade off surface of model performance and complexity and (d) expedites real world applications by the simple, rapid and robust deployment of symbolic models outside the software environment they were developed in.Comment: 26 pages, accepted for publication in the Springer Handbook of Genetic Programming Applications (2015, in press

    An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes

    Get PDF
    In the last decades, new types of generation technologies have emerged and have been gradually integrated into the existing power systems, moving their classical architectures to distributed systems. Despite the positive features associated to this paradigm, new problems arise such as coordination and uncertainty. In this framework, microgrids constitute an effective solution to deal with the coordination and operation of these distributed energy resources. This paper proposes a Genetic Algorithm (GA) to address the combined problem of Unit Commitment (UC) and Economic Dispatch (ED). With this end, a model of a microgrid is introduced together with all the control variables and physical constraints. To optimally operate the microgrid, three operation modes are introduced. The first two attend to optimize economical and environmental factors, while the last operation mode considers the errors induced by the uncertainties in the demand forecasting. Therefore, it achieves a robust design that guarantees the power supply for different confidence levels. Finally, the algorithm was applied to an example scenario to illustrate its performance. The achieved simulation results demonstrate the validity of the proposed approach.Ministerio de Ciencia, Innovación y Universidades TEC2016-80242-PMinisterio de Economía y Competitividad PCIN-2015-043Universidad de Sevilla Programa propio de I+D+

    40 Years Theory and Model at Wageningen UR

    Get PDF
    "Theorie en model" zo luidde de titel van de inaugurele rede van CT de Wit (1968). Reden genoeg voor een (theoretische) terugblik op zijn wer

    Towards Structuring Smart Grid: Energy Scheduling, Parking Lot Allocation, and Charging Management

    Get PDF
    Nowadays, the conventional power systems are being restructured and changed into smart grids to improve their reliability and efficiency, which brings about better social, economic, and environmental benefits. To build a smart grid, energy scheduling, energy management, parking lot allocation, and charging management of plug-in electric vehicles (PEVs) are important subjects that must be considered. Accordingly, in this dissertation, three problems in structuring a smart grid are investigated. The first problem investigates energy scheduling of smart homes (SHs) to minimize daily energy consumption cost. The challenges of the problem include modeling the technical and economic constraints of the sources and dealing with the variability and uncertainties concerned with the power of the photovoltaic (PV) panels that make the problem a mixed-integer nonlinear programming (MINLP), dynamic (time-varying), and stochastic optimization problem. In order to handle the variability and uncertainties of power of PV panels, we propose a multi-time scale stochastic model predictive control (MPC). We use multi-time scale approach in the stochastic MPC to simultaneously have vast vision for the optimization time horizon and precise resolution for the problem variables. In addition, a combination of genetic algorithm (GA) and linear programming (GA-LP) is applied as the optimization tool. Further, we propose cooperative distributed energy scheduling to enable SHs to share their energy resources in a distributed way. The simulation results demonstrate remarkable cost saving due to cooperation of SHs with one another and the effectiveness of multi-time scale MPC over single-time scale MPC. Compared to the previous studies, this work is the first study that proposes cooperative distributed energy scheduling for SHs and applies multi-time scale optimization. In the second problem, the price-based energy management of SHs for maximizing the daily profit of GENCO is investigated. The goal of GENCO is to design an optimal energy management scheme (optimal prices of electricity) that will maximize its daily profit based on the demand of active customers (SHs) that try to minimize their daily operation cost. In this study, a scenario-based stochastic approach is applied in the energy scheduling problem of each SH to address the variability and uncertainty issues of PV panels. Also, a combination of genetic algorithm (GA) and linear programming (GA-LP) is applied as the optimization tool for the energy scheduling problem of a SH. Moreover, Lambda-Iteration Economic Dispatch and GA approaches are applied to solve the generation scheduling and unit commitment (UC) problems of the GENCO, respectively. The numerical study shows the potential benefit of energy management for both GENCO and SH. Moreover, it is proven that the GENCO needs to implement the optimal scheme of energy management; otherwise, it will not be effective. Compared to the previous studies, the presented study in this paper is the first study that considers the interaction between a GENCO and SHs through the price-controlled energy management to maximize the daily profit of the GENCO and minimize the operation cost of each SH. In the third problem, traffic and grid-based parking lots allocation and charging management of PEVs is investigated from a DISCO’s and a GENCO’s viewpoints. Herein, the DISCO allocates the parking lots to each electrical feeder to minimize the overall cost of planning problem over the planning time horizon (30 years) and the GENCO manages the charging time of PEVs to maximize its daily profit by deferring the most expensive and pollutant generation units. In both planning and operation problems, the driving patterns of the PEVs’ drivers and their reaction respect to the value of incentive (discount on charging fee) and the average daily distance from the parking lot are modeled. The optimization problems of each DISCO and GENCO are solved applying quantum-inspired simulated annealing (SA) algorithm (QSA algorithm) and genetic algorithm (GA), respectively. We demonstrate that the behavioral model of drivers and their driving patterns can remarkably affect the outcomes of planning and operation problems. We show that optimal allocation of parking lots can minimize every DISCO’s planning cost and increase the GENCO’s daily profit. Compared to the previous works, the presented study in this paper is the first study that investigates the optimal parking lot placement problem (from every DISCO’s view point) and the problem of optimal charging management of PEVs (from a GENCO’s point of view) considering the characteristics of electrical distribution network, driving pattern of PEVs, and the behavior of drivers respect to value of introduced incentive and their daily distance from the suggested parking lots. In our future work, we will develop a more efficient smart grid. Specifically, we will investigate the effects of inaccessibility of SHs to the grid and disconnection of SHs in the first problem, model the reaction of other end users (in addition to SHs) based on the price elasticity of demand and their social welfare in the second problem, and propose methods for energy management of end users (in addition to charging management of PEVs) and model the load of end users in the third problem

    Optimal sizing for a grid-connected hybrid renewable energy system.

    Get PDF
    Masters Degree. University of KwaZulu- Natal, Durban.Hybrid renewable energy systems (HRESs) refer to power generating systems that integrate several sources of energy, including renewables, to provide electricity to consumers. HRESs can either work as standalone or grid-connected systems. Since wind and solar have complementary characteristics and are available in most areas, they are considered as suitable energy sources to be combined in an HRES. Moreover, the maturity of technologies needed for generating electricity from wind and solar has turned them into more economical options in many locations. Many countries, including South Africa, have introduced policies and incentives to increase their renewable energy capacities in order to address environmental concerns and reduce pollutant emissions into the atmosphere. In addition, consumers in South Africa have faced the ever-increasing price of electricity and unreliability of the grid since 2007 due to the lack of sufficient electricity production. As a result, employing HRESs has gained popularity among consumers in different sectors. This research is focused on grid-connected hybrid energy systems based on solar photovoltaic (PV) panels and wind turbines as a potential solution to reduce the dependency of residential sector consumers on the grid in Durban. The aim of the research is to identify the optimal sizing of such a HRES to be cost-effective for consumers over a certain period of time. Since the energy supplied by renewable sources are intermittent and dependent on the geographical location of the system, identifying optimal sizing becomes a challenging task in HRESs. In this research, Durban’s meteorological data and eThekwini municipality tariff rates have been considered. Moreover, two artificial intelligence methods have been used to obtain the optimal sizing for different types of available PV panels, wind turbines and inverters in the market. The results have shown that the combination of PV panels and battery storage (BS) can become a profitable option for Durban area. Moreover, the systems using higher rated power PV panels can start to become profitable in a shorter lifetime. Considering BS in a system can only become a cost-effective choice if we consider a long enough lifespan for the system
    corecore