21,882 research outputs found

    Rigorous computation of smooth branches of equilibria for the three dimensional Cahn-Hilliard equation

    Get PDF
    In this paper, we propose a new general method to compute rigorously global smooth branches of equilibria of higher-dimensional partial differential equations. The theoretical framework is based on a combination of the theory introduced in Global smooth solution curves using rigorous branch following (van den Berg et al., Math. Comput. 79(271):1565-1584, 2010) and in Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs (Gameiro and Lessard, J. Diff. Equ. 249(9):2237-2268, 2010). Using this method, one can obtain proofs of existence of global smooth solution curves of equilibria for large (continuous) parameter ranges and about local uniqueness of the solutions on the curve. As an application, we compute several smooth branches of equilibria for the three-dimensional Cahn-Hilliard equation

    Mean Field Limits for Interacting Diffusions in a Two-Scale Potential

    Get PDF
    In this paper we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in~\cite{DuncanPavliotis2016}. We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions

    Hopf bifurcation from fronts in the Cahn-Hilliard equation

    Full text link
    We study Hopf bifurcation from traveling-front solutions in the Cahn-Hilliard equation. The primary front is induced by a moving source term. Models of this form have been used to study a variety of physical phenomena, including pattern formation in chemical deposition and precipitation processes. Technically, we study bifurcation in the presence of essential spectrum. We contribute a simple and direct functional analytic method and determine bifurcation coefficients explicitly. Our approach uses exponential weights to recover Fredholm properties and spectral flow ideas to compute Fredholm indices. Simple mass conservation helps compensate for negative indices. We also construct an explicit, prototypical example, prove the existence of a bifurcating front, and determine the direction of bifurcation
    • …
    corecore