3,592 research outputs found

    Global sensitivity analysis of model uncertainty in aeroelastic wind turbine models

    Get PDF
    A framework is presented for performing global sensitivity analysis of model parameters associated with the Blade Element Momentum (BEM) models. Sobol indices based on adaptive sparse polynomial expansions are used as a measure of global sensitivities. The sensitivity analysis workflow is developed using the uncertainty quantification toolbox UQLab that is integrated with TNO's Aero-Module aeroelastic code. Uncertainties in chord, twist, and lift- and drag-coefficients have been parametrized through the use of NURBS curves. Sensitivity studies are performed on the NM80 wind turbine model from the DanAero project, for a case with 19 uncertainties in both model and geometry. The combination of parametrization and sparse adaptive polynomial chaos yields a new efficient framework for global sensitivity analysis of aeroelastic wind turbine models, paving the way to effective model calibration

    Computing derivative-based global sensitivity measures using polynomial chaos expansions

    Full text link
    In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of each input parameter (or combinations thereof) of a computational model with respect to the model output uncertainty. Variance decomposition methods leading to the well-known Sobol' indices are recognized as accurate techniques, at a rather high computational cost though. The use of polynomial chaos expansions (PCE) to compute Sobol' indices has allowed to alleviate the computational burden though. However, when dealing with large dimensional input vectors, it is good practice to first use screening methods in order to discard unimportant variables. The {\em derivative-based global sensitivity measures} (DGSM) have been developed recently in this respect. In this paper we show how polynomial chaos expansions may be used to compute analytically DGSMs as a mere post-processing. This requires the analytical derivation of derivatives of the orthonormal polynomials which enter PC expansions. The efficiency of the approach is illustrated on two well-known benchmark problems in sensitivity analysis

    Propagation of epistemic uncertainty in queueing models with unreliable server using chaos expansions

    Full text link
    In this paper, we develop a numerical approach based on Chaos expansions to analyze the sensitivity and the propagation of epistemic uncertainty through a queueing systems with breakdowns. Here, the quantity of interest is the stationary distribution of the model, which is a function of uncertain parameters. Polynomial chaos provide an efficient alternative to more traditional Monte Carlo simulations for modelling the propagation of uncertainty arising from those parameters. Furthermore, Polynomial chaos expansion affords a natural framework for computing Sobol' indices. Such indices give reliable information on the relative importance of each uncertain entry parameters. Numerical results show the benefit of using Polynomial Chaos over standard Monte-Carlo simulations, when considering statistical moments and Sobol' indices as output quantities

    Polynomial-Chaos-based Kriging

    Full text link
    Computer simulation has become the standard tool in many engineering fields for designing and optimizing systems, as well as for assessing their reliability. To cope with demanding analysis such as optimization and reliability, surrogate models (a.k.a meta-models) have been increasingly investigated in the last decade. Polynomial Chaos Expansions (PCE) and Kriging are two popular non-intrusive meta-modelling techniques. PCE surrogates the computational model with a series of orthonormal polynomials in the input variables where polynomials are chosen in coherency with the probability distributions of those input variables. On the other hand, Kriging assumes that the computer model behaves as a realization of a Gaussian random process whose parameters are estimated from the available computer runs, i.e. input vectors and response values. These two techniques have been developed more or less in parallel so far with little interaction between the researchers in the two fields. In this paper, PC-Kriging is derived as a new non-intrusive meta-modeling approach combining PCE and Kriging. A sparse set of orthonormal polynomials (PCE) approximates the global behavior of the computational model whereas Kriging manages the local variability of the model output. An adaptive algorithm similar to the least angle regression algorithm determines the optimal sparse set of polynomials. PC-Kriging is validated on various benchmark analytical functions which are easy to sample for reference results. From the numerical investigations it is concluded that PC-Kriging performs better than or at least as good as the two distinct meta-modeling techniques. A larger gain in accuracy is obtained when the experimental design has a limited size, which is an asset when dealing with demanding computational models
    corecore