1,107 research outputs found

    Cluster Before You Hallucinate: Approximating Node-Capacitated Network Design and Energy Efficient Routing

    Full text link
    We consider circuit routing with an objective of minimizing energy, in a network of routers that are speed scalable and that may be shutdown when idle. We consider both multicast routing and unicast routing. It is known that this energy minimization problem can be reduced to a capacitated flow network design problem, where vertices have a common capacity but arbitrary costs, and the goal is to choose a minimum cost collection of vertices whose induced subgraph will support the specified flow requirements. For the multicast (single-sink) capacitated design problem we give a polynomial-time algorithm that is O(log^3n)-approximate with O(log^4 n) congestion. This translates back to a O(log ^(4{\alpha}+3) n)-approximation for the multicast energy-minimization routing problem, where {\alpha} is the polynomial exponent in the dynamic power used by a router. For the unicast (multicommodity) capacitated design problem we give a polynomial-time algorithm that is O(log^5 n)-approximate with O(log^12 n) congestion, which translates back to a O(log^(12{\alpha}+5) n)-approximation for the unicast energy-minimization routing problem.Comment: 22 pages (full version of STOC 2014 paper

    On Network Coding Capacity - Matroidal Networks and Network Capacity Regions

    Get PDF
    One fundamental problem in the field of network coding is to determine the network coding capacity of networks under various network coding schemes. In this thesis, we address the problem with two approaches: matroidal networks and capacity regions. In our matroidal approach, we prove the converse of the theorem which states that, if a network is scalar-linearly solvable then it is a matroidal network associated with a representable matroid over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable networks and representable matroids over finite fields in the framework of matroidal networks. We prove a theorem about the scalar-linear solvability of networks and field characteristics. We provide a method for generating scalar-linearly solvable networks that are potentially different from the networks that we already know are scalar-linearly solvable. In our capacity region approach, we define a multi-dimensional object, called the network capacity region, associated with networks that is analogous to the rate regions in information theory. For the network routing capacity region, we show that the region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. For the network linear coding capacity region, we construct a computable rational polytope, with respect to a given finite field, that inner bounds the linear coding capacity region and provide exact algorithms and approximation heuristics for computing the polytope. The exact algorithms and approximation heuristics we present are not polynomial time schemes and may depend on the output size.Comment: Master of Engineering Thesis, MIT, September 2010, 70 pages, 10 figure

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO

    Minimum-cost multicast over coded packet networks

    Get PDF
    We consider the problem of establishing minimum-cost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomial-time solvable optimization problem, and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved
    • …
    corecore