831 research outputs found

    Livrable D5.2 of the PERSEE project : 2D/3D Codec architecture

    Get PDF
    Livrable D5.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D5.2 du projet. Son titre : 2D/3D Codec architectur

    Virtual reality tools in developing industrial training for additive manufacturing

    Get PDF
    Additive manufacturing (commonly known as 3D-printing) is experiencing increasing global popularity in the manufacturing industry. The technology has been adopted by large companies and additive manufacturing services have been outsourced by smaller ones, but first-party adoption of the technology among small and medium-sized enterprises has been slow. Additive manufacturing provides new opportunities for manufacturing but also requires specialized expertise among users of the technology. Studies indicate that modern digital learning techniques such as micro learning and the use of virtual reality and 360° video can provide effective means of learning industrial skills. The purpose of this thesis was to examine digital learning techniques, 360° video and virtual reality as well as various additive manufacturing technologies in order to produce a virtual reality -based learning application for industrial training of additive manufacturing. It was also necessary to test and validate the effectiveness of the training application and derive future considerations for more advanced iterations. The value of stereoscopic 360° virtual reality video was also examined. The first version of the training application was successfully completed, and user tests were conducted. A mix of quantitative feedback in the form of a survey, and qualitative feedback in the form of interviews, was gathered from a number of test users. Feedback was overall positive, but some user interface issues, and technical shortcomings were highlighted. Qualitative feedback regarding stereoscopic 360° video indicated the technique to have additional value for learning purposes in virtual reality. The results of these tests will be taken into consideration in the design of a second version of the training application. Topics for further studies were also proposed

    Quality of Experience in Immersive Video Technologies

    Get PDF
    Over the last decades, several technological revolutions have impacted the television industry, such as the shifts from black & white to color and from standard to high-definition. Nevertheless, further considerable improvements can still be achieved to provide a better multimedia experience, for example with ultra-high-definition, high dynamic range & wide color gamut, or 3D. These so-called immersive technologies aim at providing better, more realistic, and emotionally stronger experiences. To measure quality of experience (QoE), subjective evaluation is the ultimate means since it relies on a pool of human subjects. However, reliable and meaningful results can only be obtained if experiments are properly designed and conducted following a strict methodology. In this thesis, we build a rigorous framework for subjective evaluation of new types of image and video content. We propose different procedures and analysis tools for measuring QoE in immersive technologies. As immersive technologies capture more information than conventional technologies, they have the ability to provide more details, enhanced depth perception, as well as better color, contrast, and brightness. To measure the impact of immersive technologies on the viewersĂą QoE, we apply the proposed framework for designing experiments and analyzing collected subjectsĂą ratings. We also analyze eye movements to study human visual attention during immersive content playback. Since immersive content carries more information than conventional content, efficient compression algorithms are needed for storage and transmission using existing infrastructures. To determine the required bandwidth for high-quality transmission of immersive content, we use the proposed framework to conduct meticulous evaluations of recent image and video codecs in the context of immersive technologies. Subjective evaluation is time consuming, expensive, and is not always feasible. Consequently, researchers have developed objective metrics to automatically predict quality. To measure the performance of objective metrics in assessing immersive content quality, we perform several in-depth benchmarks of state-of-the-art and commonly used objective metrics. For this aim, we use ground truth quality scores, which are collected under our subjective evaluation framework. To improve QoE, we propose different systems for stereoscopic and autostereoscopic 3D displays in particular. The proposed systems can help reducing the artifacts generated at the visualization stage, which impact picture quality, depth quality, and visual comfort. To demonstrate the effectiveness of these systems, we use the proposed framework to measure viewersĂą preference between these systems and standard 2D & 3D modes. In summary, this thesis tackles the problems of measuring, predicting, and improving QoE in immersive technologies. To address these problems, we build a rigorous framework and we apply it through several in-depth investigations. We put essential concepts of multimedia QoE under this framework. These concepts not only are of fundamental nature, but also have shown their impact in very practical applications. In particular, the JPEG, MPEG, and VCEG standardization bodies have adopted these concepts to select technologies that were proposed for standardization and to validate the resulting standards in terms of compression efficiency

    Widening the view angle of auto-multiscopic display, denoising low brightness light field data and 3D reconstruction with delicate details

    Get PDF
    This doctoral thesis will present the results of my work into widening the viewing angle of the auto-multiscopic display, denoising light filed data the enhancement of captured light filed data captured in low light circumstance, and the attempts on reconstructing the subject surface with delicate details from microscopy image sets. The automultiscopic displays carefully control the distribution of emitted light over space, direction (angle) and time so that even a static image displayed can encode parallax across viewing directions (light field). This allows simultaneous observation by multiple viewers, each perceiving 3D from their own (correct) perspective. Currently, the illusion can only be effectively maintained over a narrow range of viewing angles. We propose and analyze a simple solution to widen the range of viewing angles for automultiscopic displays that use parallax barriers. We insert a refractive medium, with a high refractive index, between the display and parallax barriers. The inserted medium warps the exitant lightfield in a way that increases the potential viewing angle. We analyze the consequences of this warp and build a prototype with a 93% increase in the effective viewing angle. Additionally, we developed an integral images synthesis method that can address the refraction introduced by the inserted medium efficiently without the use of ray tracing. Capturing light field image with a short exposure time is preferable for eliminating the motion blur but it also leads to low brightness in a low light environment, which results in a low signal noise ratio. Most light field denoising methods apply regular 2D image denoising method to the sub-aperture images of a 4D light field directly, but it is not suitable for focused light field data whose sub-aperture image resolution is too low to be applied regular denoising methods. Therefore, we propose a deep learning denoising method based on micro lens images of focused light field to denoise the depth map and the original micro lens image set simultaneously, and achieved high quality total focused images from the low focused light field data. In areas like digital museum, remote researching, 3D reconstruction with delicate details of subjects is desired and technology like 3D reconstruction based on macro photography has been used successfully for various purposes. We intend to push it further by using microscope rather than macro lens, which is supposed to be able to capture the microscopy level details of the subject. We design and implement a scanning method which is able to capture microscopy image set from a curve surface based on robotic arm, and the 3D reconstruction method suitable for the microscopy image set
    • 

    corecore