337 research outputs found

    Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

    Full text link
    In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Study of information transfer optimization for communication satellites

    Get PDF
    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described

    Enabling Automated, Reliable and Efficient Aerodynamic Shape Optimization With Output-Based Adapted Meshes

    Full text link
    Simulation-based aerodynamic shape optimization has been greatly pushed forward during the past several decades, largely due to the developments of computational fluid dynamics (CFD), geometry parameterization methods, mesh deformation techniques, sensitivity computation, and numerical optimization algorithms. Effective integration of these components has made aerodynamic shape optimization a highly automated process, requiring less and less human interference. Mesh generation, on the other hand, has become the main overhead of setting up the optimization problem. Obtaining a good computational mesh is essential in CFD simulations for accurate output predictions, which as a result significantly affects the reliability of optimization results. However, this is in general a nontrivial task, heavily relying on the user’s experience, and it can be worse with the emerging high-fidelity requirements or in the design of novel configurations. On the other hand, mesh quality and the associated numerical errors are typically only studied before and after the optimization, leaving the design search path unveiled to numerical errors. This work tackles these issues by integrating an additional component, output-based mesh adaptation, within traditional aerodynamic shape optimizations. First, we develop a more suitable error estimator for optimization problems by taking into account errors in both the objective and constraint outputs. The localized output errors are then used to drive mesh adaptation to achieve the desired accuracy on both the objective and constraint outputs. With the variable fidelity offered by the adaptive meshes, multi-fidelity optimization frameworks are developed to tightly couple mesh adaptation and shape optimization. The objective functional and its sensitivity are first evaluated on an initial coarse mesh, which is then subsequently adapted as the shape optimization proceeds. The effort to set up the optimization is minimal since the initial mesh can be fairly coarse and easy to generate. Meanwhile, the proposed framework saves computational costs by reducing the mesh size at the early stages of the optimization, when the design is far from optimal, and avoiding exhaustive search on low-fidelity meshes when the outputs are inaccurate. To further improve the computational efficiency, we also introduce new methods to accelerate the error estimation and mesh adaptation using machine learning techniques. Surrogate models are developed to predict the localized output error and optimal mesh anisotropy to guide the adaptation. The proposed machine learning approaches demonstrate good performance in two-dimensional test problems, encouraging more study and developments to incorporate them within aerodynamic optimization techniques. Although CFD has been extensively used in aircraft design and optimization, the design automation, reliability, and efficiency are largely limited by the mesh generation process and the fixed-mesh optimization paradigm. With the emerging high-fidelity requirements and the further developments of unconventional configurations, CFD-based optimization has to be made more accurate and more efficient to achieve higher design reliability and lower computational cost. Furthermore, future aerodynamic optimization needs to avoid unnecessary overhead in mesh generation and optimization setup to further automate the design process. The author expects the methods developed in this work to be the keys to enable more automated, reliable, and efficient aerodynamic shape optimization, making CFD-based optimization a more powerful tool in aircraft design.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163034/1/cgderic_1.pd

    Modelling and quantification of structural uncertainties in petroleum reservoirs assisted by a hybrid cartesian cut cell/enriched multipoint flux approximation approach

    Get PDF
    Efficient and profitable oil production is subject to make reliable predictions about reservoir performance. However, restricted knowledge about reservoir distributed properties and reservoir structure calls for History Matching in which the reservoir model is calibrated to emulate the field observed history. Such an inverse problem yields multiple history-matched models which might result in different predictions of reservoir performance. Uncertainty Quantification restricts the raised model uncertainties and boosts the model reliability for the forecasts of future reservoir behaviour. Conventional approaches of Uncertainty Quantification ignore large scale uncertainties related to reservoir structure, while structural uncertainties can influence the reservoir forecasts more intensely compared with petrophysical uncertainty. What makes the quantification of structural uncertainty impracticable is the need for global regridding at each step of History Matching process. To resolve this obstacle, we develop an efficient methodology based on Cartesian Cut Cell Method which decouples the model from its representation onto the grid and allows uncertain structures to be varied as a part of History Matching process. Reduced numerical accuracy due to cell degeneracies in the vicinity of geological structures is adequately compensated with an enhanced scheme of class Locally Conservative Flux Continuous Methods (Extended Enriched Multipoint Flux Approximation Method abbreviated to extended EMPFA). The robustness and consistency of proposed Hybrid Cartesian Cut Cell/extended EMPFA approach are demonstrated in terms of true representation of geological structures influence on flow behaviour. In this research, the general framework of Uncertainty Quantification is extended and well-equipped by proposed approach to tackle uncertainties of different structures such as reservoir horizons, bedding layers, faults and pinchouts. Significant improvements in the quality of reservoir recovery forecasts and reservoir volume estimation are presented for synthetic models of uncertain structures. Also this thesis provides a comparative study of structural uncertainty influence on reservoir forecasts among various geological structures

    The Twenty-First NASTRAN (R) Users' Colloquium

    Get PDF
    This publication contains the proceedings of the Twenty-First NASTRAN Users' Colloquium held in Tampa, FL, April 26 through April 30, 1993. It provides some comprehensive general papers on the application of finite elements in engineering, comparisons with other approaches, unique applications, pre-and postprocessing with other auxiliary programs and new methods of analysis with NASTRAN

    A methodology for robust optimization of low-thrust trajectories in multi-body environments

    Get PDF
    Issued as final reportThales Alenia Spac
    corecore