127 research outputs found

    Machining strategy development in 5-axis milling operations using process models

    Get PDF
    Increased productivity and part quality can be achieved by selecting machining strategies and conditions properly. At one extreme very high speed and feed rate with small depth of cut can be used for high productivity whereas deep cuts accompanied with slow speeds and feeds may also provide increased material removal rates in some cases. In this study, it is shown that process models are useful tools to simulate and compare alternative strategies for machining of a part. 5-axis milling of turbine engine compressors made out of titanium alloys is used as the case study where strategies such as flank milling (deep cuts), point milling (light cuts) and stripe milling (medium depths) are compared in terms of process time by considering chatter stability, surface finish and tool deflections

    Efficient 5-axis CNC trochoidal flank milling of 3D cavities using custom-shaped cutting tools

    Get PDF
    A novel method for trochoidal flank milling of 3D cavities bounded by free-form surfaces is proposed. Existing 3D trochoidal milling methods use on-market milling tools whose shape is typically cylindrical or conical, and is therefore not well-suited for meeting fine milling tolerances required for finishing of benchmark free-form surfaces like blades or blisks. In contrast, our variational framework incorporates the shape of the tool into the optimization cycle and looks not only for the trochoidal milling paths, but also for the shape of the tool itself. High precision quality is ensured by firstly designing flank milling paths for the side surfaces that delimit the motion space, in which the trochoidal milling paths are further computed. Additionally, the material removal rate is maximized with the cutter-workpiece engagement being constrained under a given tolerance. Our framework also supports multi-layer approach that is necessary to handle deep cavities. The ability and efficacy of the proposed method are demonstrated by several industrial benchmarks, showing that our approach meets fine machining tolerances using only a few trochoidal paths.RYC-2017-2264

    Curve-guided 5-axis CNC flank milling of free-form surfaces using custom-shaped tools

    Get PDF
    A new method for 5-axis flank milling of free-form surfaces is proposed. Existing flank milling path-planning methods typically use on-market milling tools whose shape is cylindrical or conical, and is therefore not well-suited for meeting fine tolerances for manufacturing of benchmark free-form surfaces like turbine blades, gears, or blisks. In contrast, our optimization-based framework incorporates the shape of the tool into the optimization cycle and looks not only for the milling paths, but also for the shape of the tool itself. Given a free-form reference surface and a guiding path that roughly indicates the motion of the milling tool, tangential movability of quadruplets of spheres centered along a straight line is analyzed to indicate possible shapes and their motions. This results in G1G^1 Hermite data in the space of rigid body motions that are interpolated and further optimized, both in terms of the motion and the shape of the milling tool itself. We demonstrate our algorithm on synthetic free-form surfaces and industrial benchmark datasets, showing that the use of custom-shaped tools is capable of meeting fine industrial tolerances and outperforms the use of classical, on-market tools.RYC-2017-2264

    Automatic fitting of conical envelopes to free-form surfaces for flank CNC machining

    Get PDF
    We propose a new algorithm to detect patches of free-form surfaces that can be well approximated by envelopes of a rotational cone under a rigid body motion. These conical envelopes are a preferable choice from the manufacturing point of view as they are, by-definition, manufacturable by computer numerically controlled (CNC) machining using the efficient flank (peripheral) method with standard conical tools. Our geometric approach exploits multi-valued vector fields that consist of vectors in which the point-surface distance changes linearly. Integrating such vector fields gives rise to a family of integral curves, and, among them, linear segments that further serve as conical axes are quickly extracted. The lines that additionally admit tangential motion of the associated cone along the reference geometry form a set of candidate lines that are sequentially clustered and ordered to initialize motions of a rigid truncated cone. We validate our method by applying it on synthetic examples with exact envelopes, recovering correctly the exact solutions, and by testing it on several benchmark industrial datasets, detecting manufacturable conical envelope patches within fine tolerances

    On initialization of milling paths for 5-axis flank CNC machining of free-form surfaces with general milling tools

    Get PDF
    We propose a path-planning algorithm for 5-axis flank CNC machining with general tools of varying curvature. Our approach generalizes the initialization strategy introduced for conical tools [Bo et al., 2017] to arbitrary milling tools. Given a free-form (NURBS) surface and a rotational milling tool, we look for its motion in 3D to approximate the input reference surface within a given tolerance. We show that for a general shape of the milling tool, there exist locally and generically four 3D directions in which the point-surface distance follows the shape of the tool up to second order. These directions form a 3D multi-valued vector field and its integration gives rise to a set of integral curves. Among these integral curves, we seek straight line segments that correspond to good initial positions of the axes of the milling tool. We validate our method against synthetic examples with known exact solutions and, on industrial datasets, we detect approximate solutions that meet fine machining tolerances. We also demonstrate applicability of our method for efficient flank milling of convex regions that is not possible using traditional conical tools.RYC-2017-2264

    5-axis double-flank CNC machining of spiral bevel gears via custom-shaped milling tools -- Part I: modeling and simulation

    Get PDF
    A new category of 5-axis flank computer numerically controlled (CNC) machining, called \emph{double-flank}, is presented. Instead of using a predefined set of milling tools, we use the shape of the milling tool as a free parameter in our optimization-based approach and, for a given input free-form (NURBS) surface, compute a custom-shaped tool that admits highly-accurate machining. Aimed at curved narrow regions where the tool may have double tangential contact with the reference surface, like spiral bevel gears, the initial trajectory of the milling tool is estimated by fitting a ruled surface to the self-bisector of the reference surface. The shape of the tool and its motion then both undergo global optimization that seeks high approximation quality between the input free-form surface and its envelope approximation, fairness of the motion and the tool, and prevents overcutting. That is, our double-flank machining is meant for the semi-finishing stage and therefore the envelope of the motion is, by construction, penetration-free with the references surface. Our algorithm is validated by a commercial path-finding software and the prototype of the tool for a specific gear model is 3D printed.RYC-2017-22649 BERC 2014-201

    Characterizing envelopes of moving rotational cones and applications in CNC machining

    Get PDF
    Motivated by applications in CNC machining, we provide a characterization of surfaces which are enveloped by a one-parametric family of congruent rotational cones. As limit cases, we also address ruled surfaces and their offsets. The characterizations are higher order nonlinear PDEs generalizing the ones by Gauss and Monge for developable surfaces and ruled surfaces, respectively. The derivation includes results on local approximations of a surface by cones of revolution, which are expressed by contact order in the space of planes. To this purpose, the isotropic model of Laguerre geometry is used as there rotational cones correspond to curves (isotropic circles) and higher order contact is computed with respect to the image of the input surface in the isotropic model. Therefore, one studies curve-surface contact that is conceptually simpler than the surface-surface case. We show that, in a generic case, there exist at most six positions of a fixed rotational cone that have third order contact with the input surface. These results are themselves of interest in geometric computing, for example in cutter selection and positioning for flank CNC machining.RYC-2017-2264

    Reparameterization of ruled surfaces: toward generating smooth jerk-minimized toolpaths for multi-axis flank CNC milling

    Get PDF
    This paper presents a novel jerk minimization algorithm in the context of multi-axis flank CNC machining. The toolpath of the milling axis in a flank milling process, a ruled surface, is reparameterized by a B-spline function, whose control points and knot vector are unknowns in an optimization-based framework. The total jerk of the tool's motion is minimized, implying the tool is moving as smooth as possible, without changing the geometry of the given toolpath. Our initialization stage stems from measuring the ruling distance metric (RDM) of the ruled surface. We show on several examples that this initialization reliably finds close initial guesses of jerk-minimizers and is also computationally efficient. The applicability of the presented approach is illustrated by some practical case studies.RYC-2017-2264

    Five-Axis Numerical Control Machining of the Tooth Flank of a Logarithmic Spiral Bevel Gear Pinion

    Get PDF
    In this paper, the production of a logarithmic spiral bevel gear prototype is illustrated by the manufacture of the gear pinion. Firstly, the conical gear body of a logarithmic spiral bevel gear pinion was shaped on a C6140A1 lathe. A kinematic model of a five-axis vertical machining centre DMG DMU40 monoBLOCK, with the position and orientation of each axis relative to the movement of the workpiece, was created. In addition, the processing coordinate transformation formula between the workpiece coordinate system and the cutter coordinate system was devised. The cutter location file was converted to the numerical control code of the DMG DMU40 monoBLOCK. Finally, the pinion of a logarithmic spiral bevel gear was machined on the DMG DMU40 monoBLOCK as a prototype to be used in further research of the logarithmic spiral bevel gear

    Geometry and tool motion planning for curvature adapted CNC machining

    Get PDF
    CNC machining is the leading subtractive manufacturing technology. Although it is in use since decades, it is far from fully solved and still a rich source for challenging problems in geometric computing. We demonstrate this at hand of 5-axis machining of freeform surfaces, where the degrees of freedom in selecting and moving the cutting tool allow one to adapt the tool motion optimally to the surface to be produced. We aim at a high-quality surface finish, thereby reducing the need for hard-to-control post-machining processes such as grinding and polishing. Our work is based on a careful geometric analysis of curvature-adapted machining via so-called second order line contact between tool and target surface. On the geometric side, this leads to a new continuous transition between “dual” classical results in surface theory concerning osculating circles of surface curves and oscu- lating cones of tangentially circumscribed developable surfaces. Practically, it serves as an effective basis for tool motion planning. Unlike previous approaches to curvature-adapted machining, we solve locally optimal tool positioning and motion planning within a single optimization framework and achieve curvature adaptation even for convex surfaces. This is possible with a toroidal cutter that contains a negatively curved cutting area. The effectiveness of our approach is verified at hand of digital models, simulations and machined parts, including a comparison to results generated with commercial software
    corecore