671 research outputs found

    Multi-objective optimal power resources planning of microgrids with high penetration of intermittent nature generation and modern storage systems

    Get PDF
    Microgrids are self-controlled entities at the distribution voltage level that interconnect distributed energy resources (DERs) with loads and can be operated in either grid-connected or islanded mode. This type of active distribution network has evolved as a powerful concept to guarantee a reliable, efficient and sustainable electricity delivery as part of the power systems of the future. However, benefits of microgrids, such as the ancillary services (AS) provision, are not possible to be properly exploited before traditional planning methodologies are updated. Therefore, in this doctoral thesis, a named Probabilistic Multi-objective Microgrid Planning methodology with two versions, POMMP and POMMP2, is proposed for effective decision-making on the optimal allocation of DERs and topology definition under the paradigm of microgrids with capacity for providing AS to the main power grid. The methodologies are defined to consider a mixed generation matrix with dispatchable and non-dispatchable technologies, as well as, distributed energy storage systems and both conventional and power-electronic-based operation configurations. The planning methodologies are formulated based on a so-called true-multi-objective optimization problem with a configurable set of three objective functions. Accordingly, the capacity to supply AS is optimally enhanced with the maximization of the available active residual power in grid-connected operation mode; the capital, maintenance, and operation costs of microgrid are minimized, while the revenues from the services provision and participation on liberalized markets are maximized in a cost function; and the active power losses in microgrid´s operation are minimized. Furthermore, a probabilistic technique based on the simulation of parameters from their probabilistic density function and Monte Carlo Simulation is adopted to model the stochastic behavior of the non-dispatchable renewable generation resources and load demand as the main sources of uncertainties in the planning of microgrids. Additionally, POMMP2 methodology particularly enhances the proposal in POMMP by modifying the methodology and optimization model to consider the optimal planning of microgrid's topology with the allocation of DERs simultaneously. In this case, the concept of networked microgrid is contemplated, and a novel holistic approach is proposed to include a multilevel graph-partitioning technique and subsequent iterative heuristic optimization for the optimal formation of clusters in the topology planning and DERs allocation process. This microgrid planning problem leads to a complex non-convex mixed-integer nonlinear optimization problem with multiple contradictory objective functions, decision variables, and diverse constraint conditions. Accordingly, the optimization problem in the proposed POMMP/POMMP2 methodologies is conceived to be solved using multi-objective population-based metaheuristics, which gives rise to the adaptation and performance assessment of two existing optimization algorithms, the well-known Non-dominated Sorting Genetic Algorithm II (NSGAII) and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Furthermore, the analytic hierarchy process (AHP) is tested and proposed for the multi-criteria decision-making in the last step of the planning methodologies. The POMMP and POMMP2 methodologies are tested in a 69-bus and 37-bus medium voltage distribution network, respectively. Results show the benefits of an a posteriori decision making with the true-multi-objective approach as well as a time-dependent planning methodology. Furthermore, the results from a more comprehensive planning strategy in POMMP2 revealed the benefits of a holistic planning methodology, where different planning tasks are optimally and simultaneously addressed to offer better planning results.Las microrredes son entes autocontrolados que operan en media o baja tensión, interconectan REDs con las cargas y pueden ser operadas ya sea en modo conectado a la red o modo isla. Este tipo de red activa de distribución ha evolucionado como un concepto poderoso para garantizar un suministro de electricidad fiable, eficiente y sostenible como parte de los sistemas de energía del futuro. Sin embargo, para explotar los beneficios potenciales de las microrredes, tales como la prestación de servicios auxiliares (AS), primero es necesario formular apropiadas metodologías de planificación. En este sentido, en esta tesis doctoral, una metodología probabilística de planificación de microrredes con dos versiones, POMMP y POMMP2, es propuesta para la toma de decisiones efectiva en la asignación óptima de DERs y la definición de la topología de microrredes bajo el paradigma de una microrred con capacidad para proporcionar AS a la red principal. Las metodologías se definen para considerar una matriz de generación mixta con tecnologías despachables y no despachables, así como sistemas distribuidos para el almacenamiento de energía y la interconnección de recursos con o sin una interfaz basada en dispositivos de electrónica de potencia. Las metodologías de planificación se formulan sobre la base de un problema de optimización multiobjetivo verdadero con un conjunto configurable de tres funciones objetivo. Con estos se pretende optimizar la capacidad de suministro de AS con la maximización de la potencia activa residual disponible en modo conectado a la red; la minimización de los costos de capital, mantenimiento y funcionamiento de la microrred al tiempo que se maximizan los ingresos procedentes de la prestación de servicios y la participación en los mercados liberalizados; y la minimización de las pérdidas de energía activa en el funcionamiento de la microrred. Además, se adopta una técnica probabilística basada en la simulación de parámetros a partir de la función de densidad de probabilidad y el método de Monte Carlo para modelar el comportamiento estocástico de los recursos de generación renovable no despachables. Adicionalmente,la POMMP2 mejora la propuesta de POMMP modificando la metodología y el modelo de optimización para considerar simultáneamente la planificación óptima de la topología de la microrred con la asignación de DERs. Así pues, se considera el concepto de microrredes interconectadas en red y se propone un novedoso enfoque holístico que incluye una técnica de partición de gráficos multinivel y optimización iterativa heurística para la formación óptima de clusters para el planeamiento de la topología y asignación de DERs. Este problema de planificación de microrredes da lugar a un complejo problema de optimización mixto, no lineal, no convexos y con múltiples funciones objetivo contradictorias, variables de decisión y diversas condiciones de restricción. Por consiguiente, el problema de optimización en las metodologías POMMP/POMMP2 se concibe para ser resuelto utilizando técnicas multiobjetivo de optimización metaheurísticas basadas en población, lo cual da lugar a la adaptación y evaluación del rendimiento de dos algoritmos de optimización existentes, el conocido Non-dominated Sorting Genetic Algorithm II (NSGAII) y el Evolutionary Algorithm Based on Decomposition (MOEA/D). Además, se ha probado y propuesto el uso de la técnica de proceso analítico jerárquico (AHP) para la toma de decisiones multicriterio en el último paso de las metodologías de planificación. Las metodologías POMMP/POMMP2 son probadas en una red de distribución de media tensión de 69 y 37 buses, respectivamente. Los resultados muestran los beneficios de la toma de decisiones a posteriori con el enfoque de optimización multiobjetivo verdadero, así como una metodología de planificación dependiente del tiempo. Además, los resultados de la estrategia de planificación con POMMP2 revelan los beneficios de una metodología de planificación holística, en la que las diferentes tareas de planificación se abordan de manera óptima y simultánea para ofrecer mejores resultados de planificación.Línea de investigación: Planificación de redes inteligentes We thank to the Administrative Department of Science, Technology and Innovation - Colciencias, Colombia, for the granted National Doctoral funding program - 647Doctorad

    On the Long-Term Efficiency of Market Splitting in Germany

    Get PDF
    In Europe, the ongoing renewable expansion and delays in the planned grid extension have intensified the discussion about an adequate electricity market design. Against this background, we jointly apply an agent-based electricity market model and an optimal power flow model to investigate the long-term impacts of splitting the German market area into two price zone. Our approach allows capturing long-term investment and short-term market behavior under imperfect information. We find strong impacts of a German market splitting on electricity prices, expansion planning of generators and required congestion management. While the congestion volumes decrease significantly under a market split in the short term, the optimal zonal configuration for 2020 becomes outdated over time due to dynamic effects like grid extension, renewable expansion and new power plant investments. Policymakers and regulators should therefore regularly re-assess bidding zone configurations. Yet, this stands in contrast to the major objective of price zones to create stable locational investment incentives

    An investigation of multilevel refinement in routing and location problems

    Get PDF
    Multilevel refinement is a collaborative hierarchical solution technique. The multilevel technique aims to enhance the solution process of optimisation problems by improving the asymptotic convergence in the quality of solutions produced by its underlying local search heuristics and/or improving the convergence rate of these heuristics. To these aims, the central methodologies of the multilevel technique are filtering solutions from the search space (via coarsening), reducing the amount of problem detail considered at each level of the solution process and providing a mechanism to the underlying local search heuristics for efficiently making large moves around the search space. The neighbourhoods accessible by these moves are typically inaccessible if the local search heuristics are applied to the un-coarsened problems. The methodologies combine to meet the multilevel technique's aims, because, as the multilevel technique iteratively coarsens, extends and refines a given problem, it reduces the possibility of the local search heuristic becoming trapped in local optima of poor quality. The research presented in this thesis investigates the application of multilevel refinement to classes of location and routing problems and develops numerous multilevel algorithms. Some of these algorithms are collaborative techniques for metaheuristics and others are collaborative techniques for local search heuristics. Additionally, new methods of coarsening for location and routing problems and enhancements for the multilevel technique are developed. It is demonstrated that the multilevel technique is suited to a wide array of problems. By extending the investigations of the multilevel technique across routing and location problems, the research was able to present generalisations regarding the multilevel technique's suitability, for these and similar types of problems. Finally, results on a number of well known benchmarking suites for location and routing problem are presented, comparing equivalent single-level and multilevel algorithms. These results demonstrate that the multilevel technique provides significant gains over its single-level counterparts. In all cases, the multilevel algorithm was able to improve the asymptotic convergence in the quality of solutions produced by the standard (single-level) local search heuristics or metaheuristics. The multilevel technique did not improve the convergence rate of the single-level's local search heuristics in all cases. However, for large-scale problems the multilevel variants scaled in a manner superior to the single-level techniques. The research also demonstrated that for sufficiently large problems, the multilevel technique was able to improve the asymptotic convergence in the quality of solutions at a sufficiently fast rate, such that the multilevel algorithms were able to produce superior results compared to the single-level versions, without refining the solution down to the most detailed level
    corecore