10 research outputs found

    A novel dual-decomposition method for non-convex mixed integer quadratically constrained quadratic problems

    Full text link
    In this paper, we propose the novel p-branch-and-bound method for solving two-stage stochastic programming problems whose deterministic equivalents are represented by non-convex mixed-integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p-branch-and-bound method can be arbitrarily adjusted by altering the value of the precision factor p. The proposed method combines two key techniques. The first one, named p-Lagrangian decomposition, generates a mixed-integer relaxation of a dual problem with a separable structure for a primal non-convex MIQCQP problem. The second one is a version of the classical dual decomposition approach that is applied to solve the Lagrangian dual problem and ensures that integrality and non-anticipativity conditions are met in the optimal solution. The p-branch-and-bound method's efficiency has been tested on randomly generated instances and demonstrated superior performance over commercial solver Gurobi. This paper also presents a comparative analysis of the p-branch-and-bound method efficiency considering two alternative solution methods for the dual problems as a subroutine. These are the proximal bundle method and Frank-Wolfe progressive hedging. The latter algorithm relies on the interpolation of linearisation steps similar to those taken in the Frank-Wolfe method as an inner loop in the classic progressive hedging.Comment: 19 pages, 5 table

    Enhancements of Discretization Approaches for Non-Convex Mixed-Integer Quadratically Constraint Quadratic Programming

    Full text link
    We study mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We present two MIP relaxation methods for non-convex continuous variable products that enhance existing approaches. One is based on a separable reformulation, while the other extends the well-known MIP relaxation normalized multiparametric disaggregation technique (NMDT). In addition, we introduce a logarithmic MIP relaxation for univariate quadratic terms, called sawtooth relaxation, based on [4]. We combine the latter with the separable reformulation to derive MIP relaxations of MIQCQPs. We provide a comprehensive theoretical analysis of these techniques, and perform a broad computational study to demonstrate the effectiveness of the enhanced MIP relaxations in terms producing tight dual bounds for MIQCQP

    Assessment of Lagrangean decomposition for short-term planning of integrated refinery-petrochemical operations

    Get PDF
    We present an integrated methodology for optimal short-term planning of integrated refinery-petrochemical complexes (IRPCs) and demonstrate it on a full-scale industrial case study under four realistic planning scenarios. The large-scale mixed-integer quadratically constrained optimization models are amenable to a spatial Lagrangean decomposition through dividing the IRPC into multiple subsections, which comprise crude management, refinery, fuel blending, and petrochemical production. The decomposition algorithm creates virtual markets for trading crude blends and intermediate petrochemical streams within the IRPC and seeks an optimal tradeoff in such markets, with the Lagrange multipliers acting as transfer prices. The best results are obtained for decompositions with two or three subsections, achieving optimality gaps below 4% in all four planning scenarios. The Lagrangean decomposition provides tighter primal and dual bounds than the global solvers BARON and ANTIGONE, and it also improves the dual bounds computed using piecewise linear relaxation strategies

    Global optimisation of large-scale quadratic programs: application to short-term planning of industrial refinery-petrochemical complexes

    Get PDF
    This thesis is driven by an industrial problem arising in the short-term planning of an integrated refinery-petrochemical complex (IRPC) in Colombia. The IRPC of interest is composed of 60 industrial plants and a tank farm for crude mixing and fuel blending consisting of 30 additional units. It considers both domestic and imported crude oil supply, as well as refined product imports such as low sulphur diesel and alkylate. This gives rise to a large-scale mixed-integer quadratically constrained quadratic program (MIQCQP) comprising about 7,000 equality constraints with over 35,000 bilinear terms and 280 binary variables describing operating modes for the process units. Four realistic planning scenarios are recreated to study the performance of the algorithms developed through the thesis and compare them to commercial solvers. Local solvers such as SBB and DICOPT cannot reliably solve such large-scale MIQCQPs. Usually, it is challenging to even reach a feasible solution with these solvers, and a heuristic procedure is required to initialize the search. On the other hand, global solvers such as ANTIGONE and BARON determine a feasible solution for all the scenarios analysed, but they are unable to close the relaxation gap to less than 40% on average after 10h of CPU runtime. Overall, this industrial-size problem is thus intractable to global optimality in a monolithic way. The first main contribution of the thesis is a deterministic global optimisation algorithm based on cluster decomposition (CL) that divides the network into groups of process units according to their functionality. The algorithm runs through the sequences of clusters and proceeds by alternating between: (i) the (global) solution of a mixed-integer linear program (MILP), obtained by relaxing the bilinear terms based on their piecewise McCormick envelopes and a dynamic partition of their variable ranges, in order to determine an upper bound on the maximal profit; and (ii) the local solution of a quadratically-constrained quadratic program (QCQP), after fixing the binary variables and initializing the continuous variables to the relaxed MILP solution point, in order to determine a feasible solution (lower bound on the maximal profit). Applied to the base case scenario, the CL approach reaches a best solution of 2.964 MMUSD/day and a relaxation gap of 7.5%, a remarkable result for such challenging MIQCQP problem. The CL approach also vastly outperforms both ANTIGONE (2.634 MMUSD/day, 32% optimality gap) and BARON (2.687 MMUSD/day, 40% optimality gap). The second main contribution is a spatial Lagrangean decomposition, which entails decomposing the IRPC short-term planning problem into a collection of smaller subproblems that can be solved independently to determine an upper bound on the maximal profit. One advantage of this strategy is that each sub-problem can be solved to global optimality, potentially providing good initial points for the monolithic problem itself. It furthermore creates a virtual market for trading crude blends and intermediate refined–petrochemical streams and seeks an optimal trade-off in such a market, with the Lagrange multipliers acting as transfer prices. A decomposition over two to four is considered, which matches the crude management, refinery, petrochemical operations, and fuel blending sections of the IRPC. An optimality gap below 4% is achieved in all four scenarios considered, which is a significant improvement over the cluster decomposition algorithm.Open Acces

    On the interplay of Mixed Integer Linear, Mixed Integer Nonlinear and Constraint Programming

    Get PDF
    In this thesis we study selected topics in the field of Mixed Integer Programming (MIP), in particular Mixed Integer Linear and Nonlinear Programming (MI(N)LP). We set a focus on the influences of Constraint Programming (CP). First, we analyze Mathematical Programming approaches to water network optimization, a set of challenging optimization problems frequently modeled as non-convex MINLPs. We give detailed descriptions of many variants and survey solution approaches from the literature. We are particularly interested in MILP approximations and present a respective computational study for water network design problems. We analyze this approach by algorithmic considerations and highlight the importance of certain convex substructures in these non-convex MINLPs. We further derive valid inequalities for water network design problems exploiting these substructures. Then, we treat Mathematical Programming problems with indicator constraints, recalling their most popular reformulation techniques in MIP, leading to either big-M constraints or disjunctive programming techniques. The latter give rise to reformulations in higher-dimensional spaces, and we review special cases from the literature that allow to describe the projection on the original space of variables explicitly. We theoretically extend the respective results in two directions and conduct computational experiments. We then present an algorithm for MILPs with indicator constraints that incorporates elements of CP into MIP techniques, including computational results for the JobShopScheduling problem. Finally, we introduce an extension of the class of MILPs so that linear expressions are allowed to have non-contiguous domains. Inspired by CP, this permits to model holes in the domains of variables as a special case. For such problems, we extend the theory of split cuts and show two ways of separating them, namely as intersection and lift-and-project cuts, and present computational results. We further experiment with an exact algorithm for such problems, applied to the Traveling Salesman Problem with multiple time windows

    General solution methods for mixed integer quadratic programming and derivative free mixed integer non-linear programming problems

    Get PDF
    A dissertation submitted to the Faculty of Science School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg. April 27, 2013.In a number of situations the derivative of the objective function of an optimization problem is not available. This thesis presents a novel algorithm for solving mixed integer programs when this is the case. The algorithm is the first developed for problems of this type which uses a trust region methodology. Three implementations of the algorithm are developed and deterministic proofs of convergence to local minima are provided for two of the implementations. In the development of the algorithm several other contributions are made. The derivative free algorithm requires the solution of several mixed integer quadratic programming subproblems and novel methods for solving nonconvex instances of these problems are developed in this thesis. Additionally, it is shown that the current definitions of local minima for mixed integer programs are deficient and a rigorous approach to developing possible definitions is proposed. Using this approach we propose a new definition which improves on those currently used in the literature. Other components of this thesis are an overview of derivative based mixed integer non-linear programming, extensive reviews of mixed integer quadratic programming and deterministic derivative free optimization and extensive computational results illustrating the effectiveness of the contributions mentioned in the previous paragraphs

    Mathematical optimization methods for aircraft conflict resolution in air traffic control

    Full text link
    Air traffic control is a very dynamic and heavy constrained environment where many decisions need to be taken over short periods of time and in the context of uncertainty. Adopting automation under such circumstances can be a crucial initiative to reduce controller workload and improve airspace usage and capacity. Traditional methods for air traffic control have been exhaustively used in the last decades and are reaching their limits, therefore automated approaches are receiving a significant and growing attention. In this thesis, the focus is to obtain optimal aircraft trajectories to ensure flight safety in the short-term by solving optimization problems. During cruise stage, separation conditions require a minimum of 5 Nautical Miles (NM) horizontally or 1000 feet (ft) vertically between any pair of aircraft. A conflict between two or more aircraft is a loss of separation among these aircraft. Air traffic networks are organized in flight levels which are separated by at least 1000 ft, hence during cruise stage, most conflicts occur among aircraft flying at the same flight level. This thesis presents several mathematical formulations to address the aircraft conflict resolution problem and its variants. The core contribution of this research is the development of novel mixed integer programming models for the aircraft conflict resolution problem. New mathematical optimization formulations for the deterministic aircraft conflict resolution problem are analyzed and exact methods are developed. Building on this framework, richer formulations capable of accounting for aircraft trajectory prediction uncertainty and trajectory recovery are proposed. Results suggest that the formulations presented in thesis are efficient and competitive enough with the state-of-art models and they can provide an alternative solution to possibly fill some of the gaps currently present in the literature. Furthermore, the results obtained demonstrate the impact of these models in solving very denser air space scenarios and their competitiveness with state-of-the-art formulations without regarding variable discretization or non-linear components

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore