1,162 research outputs found

    Burned area mapping in the brazilian savanna using a one-class support vector machine trained by active fires

    Get PDF
    We used the Visible Infrared Imaging Radiometer Suite (VIIRS) active fire data (375 m spatial resolution) to automatically extract multispectral samples and train a One-Class Support Vector Machine for burned area mapping, and applied the resulting classification algorithm to 300-m spatial resolution imagery from the Project for On-Board Autonomy-Vegetation (PROBA-V). The active fire data were screened to prevent extraction of unrepresentative burned area samples and combined with surface reflectance bi-weekly composites to produce burned area maps. The procedure was applied over the Brazilian Cerrado savanna, validated with reference maps obtained from Landsat images and compared with the Collection 6 Moderate Resolution Imaging Spectrometer (MODIS) Burned Area product (MCD64A1) Results show that the algorithm developed improved the detection of small-sized scars and displayed results more similar to the reference data than MCD64A1. Unlike active fire-based region growing algorithms, the proposed approach allows for the detection and mapping of burn scars without active fires, thus eliminating a potential source of omission error. The burned area mapping approach presented here should facilitate the development of operational-automated burned area algorithms, and is very straightforward for implementation with other sensorsinfo:eu-repo/semantics/publishedVersio

    Automated classification of heat sources detected using SWIR remote sensing

    Get PDF
    Abstract The potential of shortwave infrared (SWIR) remote sensing to detect hotspots has been investigated using satellite data for decades. The hotspots detected by satellite SWIR sensors include very high-temperature heat sources such as wildfires, volcanoes, industrial activity, or open burning. This study proposes an automated classification method of heat source detected utilizing Landsat 8 and Sentinel-2 data. We created training data of heat sources via visual inspection of hotspots detected by Landsat 8. A scheme to classify heat sources for daytime data was developed by combining classification methods based on a Convolutional Neural Network (CNN) algorithm utilizing spatial features and a decision tree algorithm based on thematic land-cover information and our time series detection record. Validation work using 10,959 classification results corresponding to hotspots acquired from May 2017 to July 2019 indicated that the two classification results were in 79.7% agreement. For hotspots where the two classification schemes agreed, the classification was 97.9% accurate. Even when the results of the two classification schemes conflicted, either was correct in 73% of the samples. To improve the accuracy, the heat source category was re-allocated to the most probable category corresponding to the combination of the results from the two methods. Integrating the two approaches achieved an overall accuracy of 92.8%. In contrast, the overall accuracy for heat source classification during nighttime reached 79.3% because only the decision tree-based classification was applicable to limited available data. Comparison with the Visible Infrared Imaging Radiometer Suite (VIIRS) fire product revealed that, despite the limited data acquisition frequency of Landsat 8, regional tendencies in hotspot occurrence were qualitatively appropriate for an annual period on a global scale

    Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    Get PDF
    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status

    Satellite-Based Assessment of Grassland Conversion and Related Fire Disturbance in the Kenai Peninsula, Alaska

    Get PDF
    Spruce beetle-induced (Dendroctonus rufipennis (Kirby)) mortality on the Kenai Peninsula has been hypothesized by local ecologists to result in the conversion of forest to grassland and subsequent increased fire danger. This hypothesis stands in contrast to empirical studies in the continental US which suggested that beetle mortality has only a negligible effect on fire danger. In response, we conducted a study using Landsat data and modeling techniques to map land cover change in the Kenai Peninsula and to integrate change maps with other geospatial data to predictively map fire danger for the same region. We collected Landsat imagery to map land cover change at roughly five-year intervals following a severe, mid-1990s beetle infestation to the present. Land cover classification was performed at each time step and used to quantify grassland encroachment patterns over time. The maps of land cover change along with digital elevation models (DEMs), temperature, and historical fire data were used to map and assess wildfire danger across the study area. Results indicate the highest wildfire danger tended to occur in herbaceous and black spruce land cover types, suggesting that the relationship between spruce beetle damage and wildfire danger in costal Alaskan forested ecosystems differs from the relationship between the two in the forests of the coterminous United States. These change detection analyses and fire danger predictions provide the Kenai National Wildlife Refuge (KENWR) ecologists and other forest managers a better understanding of the extent and magnitude of grassland conversion and subsequent change in fire danger following the 1990s spruce beetle outbreak

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    Estimation of Burned Area in the Northeastern Siberian Boreal Forest from a Long-Term Data Record (LTDR) 1982–2015 Time Series

    Get PDF
    A Bayesian classifier mapped the Burned Area (BA) in the Northeastern Siberian boreal forest (70°N 120°E–60°N 170°E) from 1982 to 2015. The algorithm selected the 0.05° (~5 km) Long-Term Data Record (LTDR) version 3 and 4 data sets to generate 10-day BA composites. Landsat-TM scenes of the entire study site in 2002, 2010, and 2011 assessed the spatial accuracy of this LTDR-BA product, in comparison to Moderate-Resolution Imaging Spectroradiometer (MODIS) MCD45A1 and MCD64A1 BA products. The LTDR-BA algorithm proves a reliable source to quantify BA in this part of Siberia, where comprehensive BA remote sensing products since the 1980s are lacking. Once grouped by year and decade, this study explored the trends in fire activity. The LTDR-BA estimates contained a high interannual variability with a maximum of 2.42 million ha in 2002, an average of 0.78 million ha/year, and a standard deviation of 0.61 million ha. Going from 6.36 in the 1980s to 10.21 million ha BA in the 2010s, there was a positive linear BA trend of approximately 1.28 million ha/decade during these last four decades in the Northeastern Siberian boreal forest

    Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved Data Interoperability

    Get PDF
    Combining data from multiple sensors into a single seamless time series, also known as data interoperability, has the potential for unlocking new understanding of how the Earth functions as a system. However, our ability to produce these advanced data sets is hampered by the differences in design and function of the various optical remote-sensing satellite systems. A key factor is the impact that calibration of these instruments has on data interoperability. To address this issue, a workshop with a panel of experts was convened in conjunction with the Pecora 20 conference to focus on data interoperability between Landsat and the Sentinel 2 sensors. Four major areas of recommendation were the outcome of the workshop. The first was to improve communications between satellite agencies and the remote-sensing community. The second was to adopt a collections-based approach to processing the data. As expected, a third recommendation was to improve calibration methodologies in several specific areas. Lastly, and the most ambitious of the four, was to develop a comprehensive process for validating surface reflectance products produced from the data sets. Collectively, these recommendations have significant potential for improving satellite sensor calibration in a focused manner that can directly catalyze efforts to develop data that are closer to being seamlessly interoperable

    Towards a deep-learning-based framework of sentinel-2 imagery for automated active fire detection

    Get PDF
    This paper proposes an automated active fire detection framework using Sentinel-2 imagery. The framework is made up of three basic parts including data collection and preprocessing, deep-learning-based active fire detection, and final product generation modules. The active fire detection module is developed on a specifically designed dual-domain channel-position attention (DCPA)+HRNetV2 model and a dataset with semi-manually annotated active fire samples is constructed over wildfires that commenced on the east coast of Australia and the west coast of the United States in 2019-2020 for the training process. This dataset can be used as a benchmark for other deep-learning-based algorithms to improve active fire detection accuracy. The performance of active fire detection is evaluated regarding the detection accuracy of deep-learning-based models and the processing efficiency of the whole framework. Results indicate that the DCPA and HRNetV2 combination surpasses DeepLabV3 and HRNetV2 models for active fire detection. In addition, the automated framework can deliver active fire detection results of Sentinel-2 inputs with coverage of about 12,000 km(2) (including data download) in less than 6 min, where average intersections over union (IoUs) of 70.4% and 71.9% were achieved in tests over Australia and the United States, respectively. Concepts in this framework can be further applied to other remote sensing sensors with data acquisitions in SWIR-NIR-Red ranges and can serve as a powerful tool to deal with large volumes of high-resolution data used in future fire monitoring systems and as a cost-efficient resource in support of governments and fire service agencies that need timely, optimized firefighting plans

    NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms

    Full text link
    The 2017–2027 National Academies' Decadal Survey, Thriving on Our Changing Planet, recommended Surface Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 μm; TIR: 8–12 μm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists
    corecore