2,154 research outputs found

    Global Network Alignment Using Multiscale Spectral Signatures

    Get PDF
    Motivation: Protein interaction networks provide an important system-level view of biological processes. One of the fundamental problems in biological network analysis is the global alignment of a pair of networks, which puts the proteins of one network into correspondence with the proteins of another network in a manner that conserves their interactions while respecting other evidence of their homology. By providing a mapping between the networks of different species, alignments can be used to inform hypotheses about the functions of unannotated proteins, the existence of unobserved interactions, the evolutionary divergence between the two species and the evolution of complexes and pathways. Results: We introduce GHOST, a global pairwise network aligner that uses a novel spectral signature to measure topological similarity across disparate networks. It exhibits state-of-the-art performance on several network alignment tasks. We show that the spectral signature used by GHOST is highly discriminative, while the alignments it produces are also robust to experimental noise. When compared with other recent approaches, we find that GHOST is able to recover larger and biologically-significant, shared subnetworks between species. Availability: An efficient and parallelized implementation of GHOST, released under the Apache 2.0 license, is available at http:// cbcb.umd.edu/kingsford-group/ghostFunding: This work was supported by the National Science Foundation [CCF-1053918, EF-0849899, and IIS-0812111]; the National Institutes of Health [1R21AI085376]; and a University of Maryland Institute for Advanced Studies New Frontiers Award

    Fair Evaluation of Global Network Aligners

    Get PDF
    Biological network alignment identifies topologically and functionally conserved regions between networks of different species. It encompasses two algorithmic steps: node cost function (NCF), which measures similarities between nodes in different networks, and alignment strategy (AS), which uses these similarities to rapidly identify high-scoring alignments. Different methods use both different NCFs and different ASs. Thus, it is unclear whether the superiority of a method comes from its NCF, its AS, or both. We already showed on MI-GRAAL and IsoRankN that combining NCF of one method and AS of another method can lead to a new superior method. Here, we evaluate MI-GRAAL against newer GHOST to potentially further improve alignment quality. Also, we approach several important questions that have not been asked systematically thus far. First, we ask how much of the node similarity information in NCF should come from sequence data compared to topology data. Existing methods determine this more-less arbitrarily, which could affect the resulting alignment(s). Second, when topology is used in NCF, we ask how large the size of the neighborhoods of the compared nodes should be. Existing methods assume that larger neighborhood sizes are better. We find that MI-GRAAL's NCF is superior to GHOST's NCF, while the performance of the methods' ASs is data-dependent. Thus, the combination of MI-GRAAL's NCF and GHOST's AS could be a new superior method for certain data. Also, which amount of sequence information is used within NCF does not affect alignment quality, while the inclusion of topological information is crucial. Finally, larger neighborhood sizes are preferred, but often, it is the second largest size that is superior, and using this size would decrease computational complexity. Together, our results give several general recommendations for a fair evaluation of network alignment methods.Comment: 19 pages. 10 figures. Presented at the 2014 ISMB Conference, July 13-15, Boston, M

    Efficient Deformable Shape Correspondence via Kernel Matching

    Full text link
    We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming. Surprisingly, in spite of the highly non-convex nature of the resulting quadratic assignment problem, our method converges to a semantically meaningful and continuous mapping in most of our experiments, and scales well. We provide preliminary theoretical analysis and several interpretations of the method.Comment: Accepted for oral presentation at 3DV 2017, including supplementary materia

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment
    • …
    corecore