85 research outputs found

    Recent advances in transient imaging: A computer graphics and vision perspective

    Get PDF
    Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation

    Efficient Methods for Computational Light Transport

    Get PDF
    En esta tesis presentamos contribuciones sobre distintos retos computacionales relacionados con transporte de luz. Los algoritmos que utilizan información sobre el transporte de luz están presentes en muchas aplicaciones de hoy en día, desde la generación de efectos visuales, a la detección de objetos en tiempo real. La luz es una valiosa fuente de información que nos permite entender y representar nuestro entorno, pero obtener y procesar esta información presenta muchos desafíos debido a la complejidad de las interacciones entre la luz y la materia. Esta tesis aporta contribuciones en este tema desde dos puntos de vista diferentes: algoritmos en estado estacionario, en los que se asume que la velocidad de la luz es infinita; y algoritmos en estado transitorio, que tratan la luz no solo en el dominio espacial, sino también en el temporal. Nuestras contribuciones en algoritmos estacionarios abordan problemas tanto en renderizado offline como en tiempo real. Nos enfocamos en la reducción de varianza para métodos offline,proponiendo un nuevo método para renderizado eficiente de medios participativos. En renderizado en tiempo real, abordamos las limitacionesde consumo de batería en dispositivos móviles proponiendo un sistema de renderizado que incrementa la eficiencia energética en aplicaciones gráficas en tiempo real. En el transporte de luz transitorio, formalizamos la simulación de este tipo transporte en este nuevo dominio, y presentamos nuevos algoritmos y métodos para muestreo eficiente para render transitorio. Finalmente, demostramos la utilidad de generar datos en este dominio, presentando un nuevo método para corregir interferencia multi-caminos en camaras Timeof- Flight, un problema patológico en el procesamiento de imágenes transitorias.n this thesis we present contributions to different challenges of computational light transport. Light transport algorithms are present in many modern applications, from image generation for visual effects to real-time object detection. Light is a rich source of information that allows us to understand and represent our surroundings, but obtaining and processing this information presents many challenges due to its complex interactions with matter. This thesis provides advances in this subject from two different perspectives: steady-state algorithms, where the speed of light is assumed infinite, and transient-state algorithms, which deal with light as it travels not only through space but also time. Our steady-state contributions address problems in both offline and real-time rendering. We target variance reduction in offline rendering by proposing a new efficient method for participating media rendering. In real-time rendering, we target energy constraints of mobile devices by proposing a power-efficient rendering framework for real-time graphics applications. In transient-state we first formalize light transport simulation under this domain, and present new efficient sampling methods and algorithms for transient rendering. We finally demonstrate the potential of simulated data to correct multipath interference in Time-of-Flight cameras, one of the pathological problems in transient imaging.<br /

    Recent advances in transient imaging: A computer graphics and vision perspective

    Get PDF
    Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation

    Stochastic glossy global illumination on the GPU

    Full text link

    Progressive Transient Photon Beams

    Get PDF
    In this work we introduce a novel algorithm for transient rendering in participating media. Our method is consistent, robust, and is able to generate animations of time-resolved light transport featuring complex caustic light paths in media. We base our method on the observation that the spatial continuity provides an increased coverage of the temporal domain, and generalize photon beams to transient-state. We extend the beam steady-state radiance estimates to include the temporal domain. Then, we develop a progressive version of spatio-temporal density estimations, that converges to the correct solution with finite memory requirements by iteratively averaging several realizations of independent renders with a progressively reduced kernel bandwidth. We derive the optimal convergence rates accounting for space and time kernels, and demonstrate our method against previous consistent transient rendering methods for participating media

    Virtual light fields for global illumination in computer graphics

    Get PDF
    This thesis presents novel techniques for the generation and real-time rendering of globally illuminated environments with surfaces described by arbitrary materials. Real-time rendering of globally illuminated virtual environments has for a long time been an elusive goal. Many techniques have been developed which can compute still images with full global illumination and this is still an area of active flourishing research. Other techniques have only dealt with certain aspects of global illumination in order to speed up computation and thus rendering. These include radiosity, ray-tracing and hybrid methods. Radiosity due to its view independent nature can easily be rendered in real-time after pre-computing and storing the energy equilibrium. Ray-tracing however is view-dependent and requires substantial computational resources in order to run in real-time. Attempts at providing full global illumination at interactive rates include caching methods, fast rendering from photon maps, light fields, brute force ray-tracing and GPU accelerated methods. Currently, these methods either only apply to special cases, are incomplete exhibiting poor image quality and/or scale badly such that only modest scenes can be rendered in real-time with current hardware. The techniques developed in this thesis extend upon earlier research and provide a novel, comprehensive framework for storing global illumination in a data structure - the Virtual Light Field - that is suitable for real-time rendering. The techniques trade off rapid rendering for memory usage and precompute time. The main weaknesses of the VLF method are targeted in this thesis. It is the expensive pre-compute stage with best-case O(N^2) performance, where N is the number of faces, which make the light propagation unpractical for all but simple scenes. This is analysed and greatly superior alternatives are presented and evaluated in terms of efficiency and error. Several orders of magnitude improvement in computational efficiency is achieved over the original VLF method. A novel propagation algorithm running entirely on the Graphics Processing Unit (GPU) is presented. It is incremental in that it can resolve visibility along a set of parallel rays in O(N) time and can produce a virtual light field for a moderately complex scene (tens of thousands of faces), with complex illumination stored in millions of elements, in minutes and for simple scenes in seconds. It is approximate but gracefully converges to a correct solution; a linear increase in resolution results in a linear increase in computation time. Finally a GPU rendering technique is presented which can render from Virtual Light Fields at real-time frame rates in high resolution VR presentation devices such as the CAVETM

    Non-line-of-sight transient rendering

    Get PDF
    The capture and analysis of light in flight, or light in transient state, has enabled applications such as range imaging, reflectance estimation and especially non-line-of-sight (NLOS) imaging. For this last case, hidden geometry can be reconstructed using time-resolved measurements of indirect diffuse light emitted by a laser. Transient rendering is a key tool for developing such new applications, significantly more challenging than its steady-state counterpart. In this work, we introduce a set of simple yet effective subpath sampling techniques targeting transient light transport simulation in occluded scenes. We analyze the usual capture setups of NLOS scenes, where both the camera and light sources are focused on particular points in the scene. Also, the hidden geometry can be difficult to sample using conventional techniques. We leverage that configuration to reduce the integration path space. We implement our techniques in a modified version of Mitsuba 2 adapted for transient light transport, allowing us to support parallelization, polarization, and differentiable rendering. © 2022 The Author(s
    corecore