26,546 research outputs found

    A cooperative Top-Down/Bottom-Up Technique for Motion Field Segmentation

    Get PDF
    The segmentation of video sequences into regions underlying a coherent motion is one of the most useful processing for video analysis and coding. In this paper, we propose an algorithm that exploits the advantages of both top-down and bottom-up techniques for motion eld segmentation. To remove camera motion, a global motion estimation and compensation is rst performed. Local motion estimation is then carried out relying on a traslational motion model. Starting from this motion eld, a two-stage analysis based on ane models takes place. In the rst stage, using a top-down segmentation technique, macro-regions with coherent ane motion are extracted. In the second stage, the segmentation of each macro-region is rened using a bottom-up approach based on a motion vector clustering. In order to further improve the accuracy of the spatio-temporal segmentation, a Markov Random Field (MRF)-inspired motion-and-intensity based renement step is performed to adjust objects boundaries

    Efficient MRF Energy Propagation for Video Segmentation via Bilateral Filters

    Get PDF
    Segmentation of an object from a video is a challenging task in multimedia applications. Depending on the application, automatic or interactive methods are desired; however, regardless of the application type, efficient computation of video object segmentation is crucial for time-critical applications; specifically, mobile and interactive applications require near real-time efficiencies. In this paper, we address the problem of video segmentation from the perspective of efficiency. We initially redefine the problem of video object segmentation as the propagation of MRF energies along the temporal domain. For this purpose, a novel and efficient method is proposed to propagate MRF energies throughout the frames via bilateral filters without using any global texture, color or shape model. Recently presented bi-exponential filter is utilized for efficiency, whereas a novel technique is also developed to dynamically solve graph-cuts for varying, non-lattice graphs in general linear filtering scenario. These improvements are experimented for both automatic and interactive video segmentation scenarios. Moreover, in addition to the efficiency, segmentation quality is also tested both quantitatively and qualitatively. Indeed, for some challenging examples, significant time efficiency is observed without loss of segmentation quality.Comment: Multimedia, IEEE Transactions on (Volume:16, Issue: 5, Aug. 2014

    Segmentation and tracking of video objects for a content-based video indexing context

    Get PDF
    This paper examines the problem of segmentation and tracking of video objects for content-based information retrieval. Segmentation and tracking of video objects plays an important role in index creation and user request definition steps. The object is initially selected using a semi-automatic approach. For this purpose, a user-based selection is required to define roughly the object to be tracked. In this paper, we propose two different methods to allow an accurate contour definition from the user selection. The first one is based on an active contour model which progressively refines the selection by fitting the natural edges of the object while the second used a binary partition tree with aPeer ReviewedPostprint (published version

    Multi-Scale 3D Scene Flow from Binocular Stereo Sequences

    Full text link
    Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene flow estimation that provides reliable results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than previous methods allow. To handle the aperture problems inherent in the estimation of optical flow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.National Science Foundation (CNS-0202067, IIS-0208876); Office of Naval Research (N00014-03-1-0108

    Joint Optical Flow and Temporally Consistent Semantic Segmentation

    Full text link
    The importance and demands of visual scene understanding have been steadily increasing along with the active development of autonomous systems. Consequently, there has been a large amount of research dedicated to semantic segmentation and dense motion estimation. In this paper, we propose a method for jointly estimating optical flow and temporally consistent semantic segmentation, which closely connects these two problem domains and leverages each other. Semantic segmentation provides information on plausible physical motion to its associated pixels, and accurate pixel-level temporal correspondences enhance the accuracy of semantic segmentation in the temporal domain. We demonstrate the benefits of our approach on the KITTI benchmark, where we observe performance gains for flow and segmentation. We achieve state-of-the-art optical flow results, and outperform all published algorithms by a large margin on challenging, but crucial dynamic objects.Comment: 14 pages, Accepted for CVRSUAD workshop at ECCV 201

    Visual Importance-Biased Image Synthesis Animation

    Get PDF
    Present ray tracing algorithms are computationally intensive, requiring hours of computing time for complex scenes. Our previous work has dealt with the development of an overall approach to the application of visual attention to progressive and adaptive ray-tracing techniques. The approach facilitates large computational savings by modulating the supersampling rates in an image by the visual importance of the region being rendered. This paper extends the approach by incorporating temporal changes into the models and techniques developed, as it is expected that further efficiency savings can be reaped for animated scenes. Applications for this approach include entertainment, visualisation and simulation
    corecore