245 research outputs found

    Global motion compensated visual attention-based video watermarking

    Get PDF
    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking

    Attention Driven Solutions for Robust Digital Watermarking Within Media

    Get PDF
    As digital technologies have dramatically expanded within the last decade, content recognition now plays a major role within the control of media. Of the current recent systems available, digital watermarking provides a robust maintainable solution to enhance media security. The two main properties of digital watermarking, imperceptibility and robustness, are complimentary to each other but by employing visual attention based mechanisms within the watermarking framework, highly robust watermarking solutions are obtainable while also maintaining high media quality. This thesis firstly provides suitable bottom-up saliency models for raw image and video. The image and video saliency algorithms are estimated directly from within the wavelet domain for enhanced compatibility with the watermarking framework. By combining colour, orientation and intensity contrasts for the image model and globally compensated object motion in the video model, novel wavelet-based visual saliency algorithms are provided. The work extends these saliency models into a unique visual attention-based watermarking scheme by increasing the watermark weighting parameter within visually uninteresting regions. An increased watermark robustness, up to 40%, against various filtering attacks, JPEG2000 and H.264/AVC compression is obtained while maintaining the media quality, verified by various objective and subjective evaluation tools. As most video sequences are stored in an encoded format, this thesis studies watermarking schemes within the compressed domain. Firstly, the work provides a compressed domain saliency model formulated directly within the HEVC codec, utilizing various coding decisions such as block partition size, residual magnitude, intra frame angular prediction mode and motion vector difference magnitude. Large computational savings, of 50% or greater, are obtained compared with existing methodologies, as the saliency maps are generated from partially decoded bitstreams. Finally, the saliency maps formulated within the compressed HEVC domain are studied within the watermarking framework. A joint encoder and a frame domain watermarking scheme are both proposed by embedding data into the quantised transform residual data or wavelet coefficients, respectively, which exhibit low visual salience

    An Algorithm for Motion Parameter Direct Estimate

    Get PDF
    Motion estimation in image sequences is undoubtedly one of the most studied research fields, given that motion estimation is a basic tool for disparate applications, ranging from video coding to pattern recognition. In this paper a new methodology which, by minimizing a specific potential function, directly determines for each image pixel the motion parameters of the object the pixel belongs to is presented. The approach is based on Markov random fields modelling, acting on a first-order neighborhood of each point and on a simple motion model that accounts for rotations and translations. Experimental results both on synthetic (noiseless and noisy) and real world sequences have been carried out and they demonstrate the good performance of the adopted technique. Furthermore a quantitative and qualitative comparison with other well-known approaches has confirmed the goodness of the proposed methodology

    Data Hiding in Digital Video

    Get PDF
    With the rapid development of digital multimedia technologies, an old method which is called steganography has been sought to be a solution for data hiding applications such as digital watermarking and covert communication. Steganography is the art of secret communication using a cover signal, e.g., video, audio, image etc., whereas the counter-technique, detecting the existence of such as a channel through a statistically trained classifier, is called steganalysis. The state-of-the art data hiding algorithms utilize features; such as Discrete Cosine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover signal to convey the message to the receiver side. The goal of embedding algorithm is to maximize the number of bits sent to the decoder side (embedding capacity) with maximum robustness against attacks while keeping the perceptual and statistical distortions (security) low. Data Hiding schemes are characterized by these three conflicting requirements: security against steganalysis, robustness against channel associated and/or intentional distortions, and the capacity in terms of the embedded payload. Depending upon the application it is the designer\u27s task to find an optimum solution amongst them. The goal of this thesis is to develop a novel data hiding scheme to establish a covert channel satisfying statistical and perceptual invisibility with moderate rate capacity and robustness to combat steganalysis based detection. The idea behind the proposed method is the alteration of Video Object (VO) trajectory coordinates to convey the message to the receiver side by perturbing the centroid coordinates of the VO. Firstly, the VO is selected by the user and tracked through the frames by using a simple region based search strategy and morphological operations. After the trajectory coordinates are obtained, the perturbation of the coordinates implemented through the usage of a non-linear embedding function, such as a polar quantizer where both the magnitude and phase of the motion is used. However, the perturbations made to the motion magnitude and phase were kept small to preserve the semantic meaning of the object motion trajectory. The proposed method is well suited to the video sequences in which VOs have smooth motion trajectories. Examples of these types could be found in sports videos in which the ball is the focus of attention and exhibits various motion types, e.g., rolling on the ground, flying in the air, being possessed by a player, etc. Different sports video sequences have been tested by using the proposed method. Through the experimental results, it is shown that the proposed method achieved the goal of both statistical and perceptual invisibility with moderate rate embedding capacity under AWGN channel with varying noise variances. This achievement is important as the first step for both active and passive steganalysis is the detection of the existence of covert channel. This work has multiple contributions in the field of data hiding. Firstly, it is the first example of a data hiding method in which the trajectory of a VO is used. Secondly, this work has contributed towards improving steganographic security by providing new features: the coordinate location and semantic meaning of the object

    Visual attention-based image watermarking

    Get PDF
    Imperceptibility and robustness are two complementary but fundamental requirements of any watermarking algorithm. Low strength watermarking yields high imperceptibility but exhibits poor robustness. High strength watermarking schemes achieve good robustness but often infuse distortions resulting in poor visual quality in host media. If distortion due to high strength watermarking can avoid visually attentive regions, such distortions are unlikely to be noticeable to any viewer. In this paper, we exploit this concept and propose a novel visual attention-based highly robust image watermarking methodology by embedding lower and higher strength watermarks in visually salient and non-salient regions, respectively. A new low complexity wavelet domain visual attention model is proposed that allows us to design new robust watermarking algorithms. The proposed new saliency model outperforms the state-of-the-art method in joint saliency detection and low computational complexity performances. In evaluating watermarking performances, the proposed blind and non-blind algorithms exhibit increased robustness to various natural image processing and filtering attacks with minimal or no effect on image quality, as verified by both subjective and objective visual quality evaluation. Up to 25% and 40% improvement against JPEG2000 compression and common filtering attacks, respectively, are reported against the existing algorithms that do not use a visual attention model

    Study and Implementation of Watermarking Algorithms

    Get PDF
    Water Making is the process of embedding data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. The object may be an audio, image or video. A copy of a digital image is identical to the original. This has in many instances, led to the use of digital content with malicious intent. One way to protect multimedia data against illegal recording and retransmission is to embed a signal, called digital signature or copyright label or watermark that authenticates the owner of the data. Data hiding, schemes to embed secondary data in digital media, have made considerable progress in recent years and attracted attention from both academia and industry. Techniques have been proposed for a variety of applications, including ownership protection, authentication and access control. Imperceptibility, robustness against moderate processing such as compression, and the ability to hide many bits are the basic but rat..

    An Algorithm for Motion Parameter Direct Estimate

    Get PDF
    corecore