29,941 research outputs found

    evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R

    Get PDF
    Commonly used classification and regression tree methods like the CART algorithm are recursive partitioning methods that build the model in a forward stepwise search. Although this approach is known to be an efficient heuristic, the results of recursive tree methods are only locally optimal, as splits are chosen to maximize homogeneity at the next step only. An alternative way to search over the parameter space of trees is to use global optimization methods like evolutionary algorithms. This paper describes the "evtree" package, which implements an evolutionary algorithm for learning globally optimal classification and regression trees in R. Computationally intensive tasks are fully computed in C++ while the "partykit" (Hothorn and Zeileis 2011) package is leveraged for representing the resulting trees in R, providing unified infrastructure for summaries, visualizations, and predictions. "evtree" is compared to "rpart" (Therneau and Atkinson 1997), the open-source CART implementation, and conditional inference trees ("ctree", Hothorn, Hornik, and Zeileis 2006). The usefulness of "evtree" is illustrated in a textbook customer classification task and a benchmark study of predictive accuracy in which "evtree" achieved at least similar and most of the time better results compared to the recursive algorithms "rpart" and "ctree".machine learning, classification trees, regression trees, evolutionary algorithms, R

    Local Rule-Based Explanations of Black Box Decision Systems

    Get PDF
    The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a limitation to the adoption of machine learning components in socially sensitive and safety-critical contexts. %Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instance's features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery
    • …
    corecore