686 research outputs found

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Observer-based controller design with disturbance feedforward framework for formation control of satellites

    Get PDF
    Copyright © 2015 The Institution of Engineering and TechnologyIn this study, a bespoke sliding mode non-linear observer and a linear controller framework is proposed for achieving robust formation control of a cluster of satellites in the case of a circular reference orbit. Exploiting the structure of the satellite dynamics, a non-linear observer is proposed based on super-twist sliding mode ideas. The observer estimates the states and any unknown bounded disturbances in ‘finite time’. The stability properties of the observers are demonstrated using Lyapunov techniques. A distributed controller, based on the estimated states and the relative position output information, depending on the underlying communication topology, is proposed. A polytopic representation of the collective dynamics which depends on the eigenvalues of the Laplacian matrix associated with the communication topology is used to synthesise the gains of the proposed control laws. A simulation example is used to demonstrate the efficacy of the proposed approach

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Synchronization with partial state coupling on SO(n)

    Full text link
    This paper studies autonomous synchronization of k agents whose states evolve on SO(n), but which are only coupled through the action of their states on one "reference vector" in Rn for each link. Thus each link conveys only partial state information at each time, and to reach synchronization agents must combine this information over time or throughout the network. A natural gradient coupling law for synchronization is proposed. Extensive convergence analysis of the coupled agents is provided, both for fixed and time-varying reference vectors. The case of SO(3) with fixed reference vectors is discussed in more detail. For comparison, we also treat the equivalent setting in Rn, i.e. with states in Rn and connected agents comparing scalar product of their states with a reference vector.Comment: to be submitted to SIAM Journal on Control and Optimizatio

    Estimator-based adaptive neural network control of leader-follower high-order nonlinear multiagent systems with actuator faults

    Get PDF
    The problem of distributed cooperative control for networked multiagent systems is investigated in this paper. Each agent is modeled as an uncertain nonlinear high-order system incorporating with model uncertainty, unknown external disturbance, and actuator fault. The communication network between followers can be an undirected or a directed graph, and only some of the follower agents can obtain the commands from the leader. To develop the distributed cooperative control algorithm, a prefilter is designed, which can derive the state-space representation to a newly constructed plant. Then, a set of distributed adaptive neural network controllers are designed by making certain modifications on traditional backstepping techniques with the aid of adaptive control, neural network control, and a second-order sliding mode estimator. Rigorous proving procedures are provided,which show that uniform ultimate boundedness of all the tracking errors can be achieved in a networked multiagent system. Finally, a numerical simulation is carried out to evaluate the theoretical results

    Motion Coordination of Aerial Vehicles

    Get PDF
    The coordinated motion control of multiple vehicles has emerged as a field of major interest in the control community. This thesis addresses two topics related to the control of a group of aerial vehicles: the output feedback attitude synchronization of rigid bodies and the formation control of Unmanned Aerial Vehicles (UAVs) capable of Vertical Take-Off and Landing (VTOL). The information flow between members of the team is assumed fixed and undirected. The first part of this thesis is devoted to the attitude synchronization of a group of spacecraft. In this context, we propose control schemes for the synchronization of a group of spacecraft to a predefined attitude trajectory without angular velocity measurements. We also propose some velocity-free consensus-seeking schemes allowing a group of spacecraft to align their attitudes, without reference trajectory specification. The second part of this thesis is devoted to the control of a group of VTOL-UAVs in the Special Euclidian group SE(3), i.e., position and orientation. In this context, we propose a few position coordination schemes without linear-velocity measurements. We also propose some solutions to the same problem in the presence of communication time-delays between aircraft. To solve the above mentioned problems, several new technical tools have been introduced in this thesis to overcome the deficiencies of the existing techniques in this field

    Tracking Control of Quadrotors

    Get PDF
    In this thesis, the tracking control problem of a 6 DOF quadrotor is considered, and different control method is proposed considering optimal control, parametric and nonparametric uncertainty, input saturation, and distributed formation control. An optimal control approach is developed for single quadrotor tracking by minimizing the cost function. For uncertainties of the dynamic system, a robust adaptive tracking controller is proposed with the special structure of the dynamics of the system. Considering the uncertainty and input constraints, a robust adaptive saturation controller is proposed with the aid of an auxiliary compensated system. Decentralized formation control method for quadrotors is presented using a leader-follower scheme using proposed optimal control method. Virtual leader is employed to drive the quadrotors to their desired formation and ultimately track the trajectory defined by the virtual leader. Sliding mode estimators have been implemented to estimate the states of the virtual leader. The control method is designed considering switching communication topologies among the quadrotors. Simulation results are provided to show the effectiveness of the proposed approaches
    corecore