20 research outputs found

    Dynamical Analysis for High-Order Delayed Hopfield Neural Networks with Impulses

    Get PDF
    The global exponential stability and uniform stability of the equilibrium point for high-order delayed Hopfield neural networks with impulses are studied. By utilizing Lyapunov functional method, the quality of negative definite matrix, and the linear matrix inequality approach, some new stability criteria for such system are derived. The results are related to the size of delays and impulses. Two examples are also given to illustrate the effectiveness of our results

    Exponential Stability of BAM Fuzzy Cellular Neural Networks with Time-Varying Delays in Leakage Terms and Impulses

    Get PDF
    BAM fuzzy cellular neural networks with time-varying delays in leakage terms and impulses are considered. Some sufficient conditions for the exponential stability of the networks are established by using differential inequality techniques. The results of this paper are completely new and complementary to the previously known results. Finally, an example is given to demonstrate the effectiveness and conservativeness of our theoretical results

    Sliding intermittent control for BAM neural networks with delays

    Get PDF
    Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/615947 Open AccessThis paper addresses the exponential stability problem for a class of delayed bidirectional associative memory (BAM) neural networks with delays. A sliding intermittent controller which takes the advantages of the periodically intermittent control idea and the impulsive control scheme is proposed and employed to the delayed BAM system. With the adjustable parameter taking different particular values, such a sliding intermittent control method can comprise several kinds of control schemes as special cases, such as the continuous feedback control, the impulsive control, the periodically intermittent control, and the semi-impulsive control. By using analysis techniques and the Lyapunov function methods, some sufficient criteria are derived for the closed-loop delayed BAM neural networks to be globally exponentially stable. Finally, two illustrative examples are given to show the effectiveness of the proposed control scheme and the obtained theoretical results

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations

    Get PDF
    This paper is concerned with piecewise pseudo almost periodic solutions of a class of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. By adopting the exponential dichotomy of linear differential equations and the fixed point theory of contraction mapping. The sufficient conditions for the existence of piecewise pseudo almost periodic solutions of the interval general BAM neural networks with mixed time-varying delays and impulsive perturbations are obtained. By adopting differential inequality techniques and mathematical methods of induction, the global exponential stability for the piecewise pseudo almost periodic solutions of the interval general BAM neural networks with mixed time-varying delays and impulsive perturbations is discussed. An example is given to illustrate the effectiveness of the results obtained in the paper

    Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

    Get PDF
    summary:In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the nn-dimensional Clifford-valued neural network into 2mn2^mn-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen's integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results
    corecore