47 research outputs found

    Global attractive set of neural networks with neutral item

    Get PDF
    This paper investigates the global attractive set of neural networks with neutral item. To better deal with the neutral terms, different types of activation functions are considered. Based on matrix measures, inequality techniques, and Lyapunov theory, three new types of Lyapunov functions are designed to find the global attractive set of the system. We give out a simulation example to verify the validity of theory results. The result is very inclusive, whether the system has equilibrium or not. As long as the system is stable, we can find its global attractive set

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Controlling stability through the rate of decay of the delay feedback kernels

    Get PDF
    Of concern is the Hopfield neural network system comprising discrete as well as distributed delays in the form of a convolution. For a desired convergence rate of the solution to the equilibrium state, we establish sufficient conditions on the delay kernels ensuring this matter. Our result improves an existing one in the literature. The adopted approach is completely different. It relies on a judicious choice of a Lyapunov-like function and careful manipulations

    Existence and stability of a periodic solution of a general difference equation with applications to neural networks with a delay in the leakage terms

    Full text link
    In this paper, a new global exponential stability criterion is obtained for a general multidimensional delay difference equation using induction arguments. In the cases that the difference equation is periodic, we prove the existence of a periodic solution by constructing a type of Poincar\'e map. The results are used to obtain stability criteria for a general discrete-time neural network model with a delay in the leakage terms. As particular cases, we obtain new stability criteria for neural network models recently studied in the literature, in particular for low-order and high-order Hopfield and Bidirectional Associative Memory(BAM).Comment: 20 pages, 3 figure

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Dynamical Analysis of DTNN with Impulsive Effect

    Get PDF
    We present dynamical analysis of discrete-time delayed neural networks with impulsive effect. Under impulsive effect, we derive some new criteria for the invariance and attractivity of discretetime neural networks by using decomposition approach and delay difference inequalities. Our results improve or extend the existing ones

    The Asymptotic Behavior for a Class of Impulsive Delay Differential Equations

    Get PDF
    This paper is concerned with asymptotical behavior for a class of impulsive delay differential equations. The new criteria for determining attracting sets and attracting basin of the impulsive system are obtained by developing the properties of quasi-invariant sets. Examples and numerical simulations are given to illustrate the effectiveness of our results. In addition, we show that the impulsive effects may play a key role to these asymptotical properties even though the solutions of corresponding nonimpulsive systems are unbounded

    STOCHASTIC DELAY DIFFERENTIAL EQUATIONS WITH APPLICATIONS IN ECOLOGY AND EPIDEMICS

    Get PDF
    Mathematical modeling with delay differential equations (DDEs) is widely used for analysis and predictions in various areas of life sciences, such as population dynamics, epidemiology, immunology, physiology, and neural networks. The memory or time-delays, in these models, are related to the duration of certain hidden processes like the stages of the life cycle, the time between infection of a cell and the production of new viruses, the duration of the infectious period, the immune period, and so on. In ordinary differential equations (ODEs), the unknown state and its derivatives are evaluated at the same time instant. In DDEs, however, the evolution of the system at a certain time instant depends on the past history/memory. Introduction of such time-delays in a differential model significantly improves the dynamics of the model and enriches the complexity of the system. Moreover, natural phenomena counter an environmental noise and usually do not follow deterministic laws strictly but oscillate randomly about some average values, so that the population density never attains a fixed value with the advancement of time. Accordingly, stochastic delay differential equations (SDDEs) models play a prominent role in many application areas including biology, epidemiology and population dynamics, mostly because they can offer a more sophisticated insight through physical phenomena than their deterministic counterparts do. The SDDEs can be regarded as a generalization of stochastic differential equations (SDEs) and DDEs.This dissertation, consists of eight Chapters, is concerned with qualitative and quantitative features of deterministic and stochastic delay differential equations with applications in ecology and epidemics. The local and global stabilities of the steady states and Hopf bifurcations with respect of interesting parameters of such models are investigated. The impact of incorporating time-delays and random noise in such class of differential equations for different types of predator-prey systems and infectious diseases is studied. Numerical simulations, using suitable and reliable numerical schemes, are provided to show the effectiveness of the obtained theoretical results.Chapter 1 provides a brief overview about the topic and shows significance of the study. Chapter 2, is devoted to investigate the qualitative behaviours (through local and global stability of the steady states) of DDEs with predator-prey systems in case of hunting cooperation on predators. Chapter 3 deals with the dynamics of DDEs, of multiple time-delays, of two-prey one-predator system, where the growth of both preys populations subject to Allee effects, with a direct competition between the two-prey species having a common predator. A Lyapunov functional is deducted to investigate the global stability of positive interior equilibrium. Chapter 4, studies the dynamics of stochastic DDEs for predator-prey system with hunting cooperation in predators. Existence and uniqueness of global positive solution and stochastically ultimate boundedness are investigated. Some sufficient conditions for persistence and extinction, using Lyapunov functional, are obtained. Chapter 5 is devoted to investigate Stochastic DDEs of three-species predator prey system with cooperation among prey species. Sufficient conditions of existence and uniqueness of an ergodic stationary distribution of the positive solution to the model are established, by constructing a suitable Lyapunov functional. Chapter 6 deals with stochastic epidemic SIRC model with time-delay for spread of COVID-19 among population. The basic reproduction number â„›s0 for the stochastic model which is smaller than â„›0 of the corresponding deterministic model is deduced. Sufficient conditions that guarantee the existence of a unique ergodic stationary distribution, using the stochastic Lyapunov functional, and conditions for the extinction of the disease are obtained. In Chapter 7, some numerical schemes for SDDEs are discussed. Convergence and consistency of such schemes are investigated. Chapter 8 summaries the main finding and future directions of research. The main findings, theoretically and numerically, show that time-delays and random noise have a significant impact in the dynamics of ecological and biological systems. They also have an important role in ecological balance and environmental stability of living organisms. A small scale of white noise can promote the survival of population; While large noises can lead to extinction of the population, this would not happen in the deterministic systems without noises. Also, white noise plays an important part in controlling the spread of the disease; When the white noise is relatively large, the infectious diseases will become extinct; Re-infection and periodic outbreaks can also occur due to the time-delay in the transmission terms

    On the Weighted Pseudo Almost Periodic Solutions of Nicholson’s Blowflies Equation

    Get PDF
    This study is concerned with the existence, uniqueness and global exponential stability of weighted pseudo almost periodic solutions of a generalized Nicholson’s blowflies equation with mixed delays. Using some differential inequalities and a fixed point theorem, sufficient conditions were obtained for the existence, uniqueness of at the least a weighted pseudo almost periodic solutions and global exponential stability of this solution. The results of this study are new and complementary to the previous ones can be found in the literature. At the end of the study an example is given to show the accuracy of our results
    corecore