557 research outputs found

    Finite-Time Stability Analysis of Switched Genetic Regulatory Networks

    Get PDF
    This paper investigates the finite-time stability problem of switching genetic regulatory networks (GRNs) with interval time-varying delays and unbounded continuous distributed delays. Based on the piecewise Lyapunov-Krasovskii functional and the average dwell time method, some new finite-time stability criteria are obtained in the form of linear matrix inequalities (LMIs), which are easy to be confirmed by the Matlab toolbox. The finite-time stability is taken into account in switching genetic regulatory networks for the first time and the average dwell time of the switching signal is obtained. Two numerical examples are presented to illustrate the effectiveness of our results

    New Stability Criterion for Discrete-Time Genetic Regulatory Networks with Time-Varying Delays and Stochastic Disturbances

    Get PDF
    We propose an improved stability condition for a class of discrete-time genetic regulatory networks (GRNs) with interval time-varying delays and stochastic disturbances. By choosing an augmented novel Lyapunov-Krasovskii functional which contains some triple summation terms, a less conservative sufficient condition is obtained in terms of linear matrix inequalities (LMIs) by using the combination of the lower bound lemma, the discrete-time Jensen inequality, and the free-weighting matrix method. It is shown that the proposed results can be readily solved by using the Matlab software. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the theoretical results

    An advanced delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays

    Get PDF
    In this typescript, we concerned the problem of delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays. An advanced Lyapunov–Krasovskii functional are defined, which is in triple integral form. Combining the Lyapunov–Krasovskii functional with convex combination method and free-weighting matrix approach the stability conditions are derived with the help of linear matrix inequalities (LMIs). Some available software collections are used to solve the conditions. Lastly, two numerical examples and their simulations are conferred to indicate the feasibility of the theoretical concepts

    Reachable Set Estimation for Discrete-Time Systems with Interval Time-Varying Delays and Bounded Disturbances

    Get PDF
    The reachable set estimation problem for discrete-time systems with delay-range-dependent and bounded disturbances is investigated. A triple-summation term, the upper bound, and the lower bound of time-varying delay are introduced into the Lyapunov function. In this case, an improved delay-range-dependent criterion is established for the addressed problem by constructing the appropriate Lyapunov functional, which guarantees that the reachable set of discrete-time systems with time-varying delay and bounded peak inputs is contained in the ellipsoid. It is worth mentioning that the initial value of the system does not need to be zero. Then, the reachable set estimation problem for time-delay systems with polytopic uncertainties is investigated. The effectiveness and the reduced conservatism of the derived results are demonstrated by an illustrative example

    Asymptotic Stability and Asymptotic Synchronization of Memristive Regulatory-Type Networks

    Get PDF
    Memristive regulatory-type networks are recently emerging as a potential successor to traditional complementary resistive switch models. Qualitative analysis is useful in designing and synthesizing memristive regulatory-type networks. In this paper, we propose several succinct criteria to ensure global asymptotic stability and global asymptotic synchronization for a general class of memristive regulatory-type networks. The experimental simulations also show the performance of theoretical results

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy
    • …
    corecore