136 research outputs found

    Exponential synchronization for reaction-diffusion neural networks with mixed time-varying delays via periodically intermittent control

    Get PDF
    This paper deals with the exponential synchronization problem for reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance. By using stochastic analysis approaches and constructing a novel Lyapunov–Krasovskii functional, a periodically intermittent controller is first proposed to guarantee the exponential synchronization of reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms of p-norm. The obtained synchronization results are easy to check and improve upon the existing ones. Particularly, the traditional assumptions on control width and time-varying delays are removed in this paper. This paper also presents two illustrative examples and uses simulated results of these examples to show the feasibility and effectiveness of the proposed scheme

    New Stability Criterion for Takagi-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Probabilistic Time-Varying Delays

    Get PDF
    A new global asymptotic stability criterion of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with probabilistic time-varying delays was derived, in which the diffusion item can play its role. Owing to deleting the boundedness conditions on amplification functions, the main result is a novelty to some extent. Besides, there is another novelty in methods, for Lyapunov-Krasovskii functional is the positive definite form of p powers, which is different from those of existing literature. Moreover, a numerical example illustrates the effectiveness of the proposed methods

    Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we introduce a new class of discrete-time neural networks (DNNs) with Markovian jumping parameters as well as mode-dependent mixed time delays (both discrete and distributed time delays). Specifically, the parameters of the DNNs are subject to the switching from one to another at different times according to a Markov chain, and the mixed time delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. We first deal with the stability analysis problem of the addressed neural networks. A special inequality is developed to account for the mixed time delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the stochastic stability. We then turn to the synchronization problem among an array of identical coupled Markovian jumping neural networks with mixed mode-dependent time delays. By utilizing the Lyapunov stability theory and the Kronecker product, it is shown that the addressed synchronization problem is solvable if several LMIs are feasible. Hence, different from the commonly used matrix norm theories (such as the M-matrix method), a unified LMI approach is developed to solve the stability analysis and synchronization problems of the class of neural networks under investigation, where the LMIs can be easily solved by using the available Matlab LMI toolbox. Two numerical examples are presented to illustrate the usefulness and effectiveness of the main results obtained

    LMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear p-Laplace Diffusion

    Get PDF
    The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinear p-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods in W1,p(Ω), Itô formula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays

    Asymptotic stability for neural networks with mixed time-delays: The discrete-time case

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the stability analysis problem for a new class of discrete-time recurrent neural networks with mixed time-delays. The mixed time-delays that consist of both the discrete and distributed time-delays are addressed, for the first time, when analyzing the asymptotic stability for discrete-time neural networks. The activation functions are not required to be differentiable or strictly monotonic. The existence of the equilibrium point is first proved under mild conditions. By constructing a new Lyapnuov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the discrete-time neural networks to be globally asymptotically stable. As an extension, we further consider the stability analysis problem for the same class of neural networks but with state-dependent stochastic disturbances. All the conditions obtained are expressed in terms of LMIs whose feasibility can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    ψ-type stability of reaction–diffusion neural networks with time-varying discrete delays and bounded distributed delays

    Get PDF
    In this paper, the ψ-type stability and robust ψ-type stability for reaction–diffusion neural networks (RDNNs) with Dirichlet boundary conditions, time-varying discrete delays and bounded distributed delays are investigated, respectively. Firstly, we analyze the ψ-type stability and robust ψ-type stability of RDNNs with time-varying discrete delays by means of ψ-type functions combined with some inequality techniques, and put forward several ψ-type stability criteria for the considered networks. Additionally, the models of RDNNs with bounded distributed delays are established and some sufficient conditions to guarantee the ψ-type stability and robust ψ-type stability are given. Lastly, two examples are provided to confirm the effectiveness of the derived results

    Novel Lagrange sense exponential stability criteria for time-delayed stochastic Cohen–Grossberg neural networks with Markovian jump parameters: A graph-theoretic approach

    Get PDF
    This paper concerns the issues of exponential stability in Lagrange sense for a class of stochastic Cohen–Grossberg neural networks (SCGNNs) with Markovian jump and mixed time delay effects. A systematic approach of constructing a global Lyapunov function for SCGNNs with mixed time delays and Markovian jumping is provided by applying the association of Lyapunov method and graph theory results. Moreover, by using some inequality techniques in Lyapunov-type and coefficient-type theorems we attain two kinds of sufficient conditions to ensure the global exponential stability (GES) through Lagrange sense for the addressed SCGNNs. Ultimately, some examples with numerical simulations are given to demonstrate the effectiveness of the acquired result
    corecore