801 research outputs found

    Robust stability for stochastic Hopfield neural networks with time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.In this paper, the asymptotic stability analysis problem is considered for a class of uncertain stochastic neural networks with time delays and parameter uncertainties. The delays are time-invariant, and the uncertainties are norm-bounded that enter into all the network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunovā€“Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be checked readily by using some standard numerical packages, and no tuning of parameters is required. Examples are provided to demonstrate the effectiveness and applicability of the proposed criteria.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of German

    Design of exponential state estimators for neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this Letter, the state estimation problem is dealt with for a class of recurrent neural networks (RNNs) with mixed discrete and distributed delays. The activation functions are assumed to be neither monotonic, nor differentiable, nor bounded. We aim at designing a state estimator to estimate the neuron states, through available output measurements, such that the dynamics of the estimation error is globally exponentially stable in the presence of mixed time delays. By using the Laypunovā€“Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A simulation example is exploited to show the usefulness of the derived LMI-based stability conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of Jiangsu Education Committee of China under Grants 05KJB110154 and BK2006064, and the National Natural Science Foundation of China under Grants 10471119 and 10671172

    Exponential stabilization of neural networks with various activation functions and mixed time-varying delays

    Full text link
    This paper presents some results on the global exponential stabilization for neural networks with various activation functions and time-varying continuously distributed delays. Based on augmented time-varying Lyapunov-Krasovskii functionals, new delay-dependent conditions for the global exponential stabilization are obtained in terms of linear matrix inequalities. A numerical example is given to illustrate the feasibility of our results

    Global Exponential Stability of Delayed Periodic Dynamical Systems

    Full text link
    In this paper, we discuss delayed periodic dynamical systems, compare capability of criteria of global exponential stability in terms of various LpL^{p} (1ā‰¤p<āˆž1\le p<\infty) norms. A general approach to investigate global exponential stability in terms of various LpL^{p} (1ā‰¤p<āˆž1\le p<\infty) norms is given. Sufficient conditions ensuring global exponential stability are given, too. Comparisons of various stability criteria are given. More importantly, it is pointed out that sufficient conditions in terms of L1L^{1} norm are enough and easy to implement in practice

    Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

    Get PDF
    We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.Comment: 24 pages, 1 figur

    Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.This Letter is concerned with the global asymptotic stability analysis problem for a class of uncertain stochastic Hopfield neural networks with discrete and distributed time-delays. By utilizing a Lyapunovā€“Krasovskii functional, using the well-known S-procedure and conducting stochastic analysis, we show that the addressed neural networks are robustly, globally, asymptotically stable if a convex optimization problem is feasible. Then, the stability criteria are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved by some standard numerical packages. The main results are also extended to the multiple time-delay case. Two numerical examples are given to demonstrate the usefulness of the proposed global stability condition.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Global point dissipativity of neural networks with mixed time-varying delays

    Get PDF
    By employing the Lyapunov method and some inequality techniques, the global point dissipativity is studied for neural networks with both discrete time-varying delays and distributed time-varying delays. Simple sufficient conditions are given for checking the global point dissipativity of neural networks with mixed time-varying delays. The proposed linear matrix inequality approach is computationally efficient as it can be solved numerically using standard commercial software. Illustrated examples are given to show the usefulness of the results in comparison with some existing results. Ā© 2006 American Institute of Physics.published_or_final_versio
    • ā€¦
    corecore