156 research outputs found

    Meshless Methods for the Neutron Transport Equation

    Full text link
    Mesh-based methods for the numerical solution of partial differential equations (PDEs) require the division of the problem domain into non-overlapping, contiguous subdomains that conform to the problem geometry. The mesh constrains the placement and connectivity of the solution nodes over which the PDE is solved. In meshless methods, the solution nodes are independent of the problem geometry and do not require a mesh to determine connectivity. This allows the solution of PDEs on geometries that would be difficult to represent using even unstructured meshes. The ability to represent difficult geometries and place solution nodes independent of a mesh motivates the use of meshless methods for the neutron transport equation, which often includes spatially-dependent PDE coefficients and strong localized gradients. The meshless local Petrov-Galerkin (MLPG) method is applied to the steady-state and k-eigenvalue neutron transport equations, which are discretized in energy using the multigroup approximation and in angle using the discrete ordinates approximation. The MLPG method uses weighted residuals of the transport equation to solve for basis function expansion coefficients of the neutron angular flux. Connectivity of the solution nodes is determined by the shared support domain of overlapping meshless functions, such as radial basis functions (RBFs) and moving least squares (MLS) functions. To prevent oscillations in the neutron flux, the MLPG transport equation is stabilized by the streamline upwind Petrov-Galerkin (SUPG) method, which adds numerical diffusion to the streaming term. Global neutron conservation is enforced by using MLS basis and weight functions and appropriate SUPG parameters. The cross sections in the transport equation are approximated in accordance with global particle balance and without constraint on their spatial dependence or the location of the basis and weight functions. The equations for the strong-form meshless collocation approach are derived for comparison to the MLPG equations. Two integration schemes for the basis and weight functions in the MLPG method are presented, including a background mesh integration and a fully meshless integration approach. The method of manufactured solutions (MMS) is used to verify the resulting MLPG method in one, two and three dimensions. Results for realistic problems, including two-dimensional pincells, a reflected ellipsoid and a three-dimensional problem with voids, are verified by comparison to Monte Carlo simulations. Finally, meshless heat transfer equations are derived using a similar MLPG approach and verified using the MMS. These heat equation are coupled to the MLPG neutron transport equations, and results for a pincell are compared to values from a commercial pressurized water reactor.PHDNuclear Engineering & Radiological SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145796/1/brbass_1.pd

    Implicit-explicit Rungeā€“Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations

    Get PDF
    We analyze a two-stage implicit-explicit Rungeā€“Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L 2 -energy estimates on discrete functions in physical space. Our main results are stability and quasi-optimal error estimates for smooth solutions under a standard hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusion-dominated regimes. The theory is illustrated by numerical examples

    Goal-based h-adaptivity of the 1-D diamond difference discrete ordinate method.

    Get PDF
    The quantity of interest (QoI) associated with a solution of a partial differential equation (PDE) is not, in general, the solution itself, but a functional of the solution. Dual weighted residual (DWR) error estimators are one way of providing an estimate of the error in the QoI resulting from the discretisation of the PDE. This paper aims to provide an estimate of the error in the QoI due to the spatial discretisation, where the discretisation scheme being used is the diamond difference (DD) method in space and discrete ordinate (SNSN) method in angle. The QoI are reaction rates in detectors and the value of the eigenvalue (Keff)(Keff) for 1-D fixed source and eigenvalue (KeffKeff criticality) neutron transport problems respectively. Local values of the DWR over individual cells are used as error indicators for goal-based mesh refinement, which aims to give an optimal mesh for a given QoI

    Numerical study of SUPG and LPS methods combined with higher order variational time discretization schemes applied to time-dependent convection-diffusion-reaction equations

    Get PDF
    This paper considers the numerical solution of time-dependent convection-diffusion-reaction equations. We shall employ combinations of streamline-upwind Petrov-Galerkin (SUPG) and local projection stabilization (LPS) methods in space with the higher order variational time discretization schemes. In particular, we consider time discretizations by discontinuous Galerkin (dG) methods and continuous Galerkin-Petrov (cGP) methods. Several numerical tests have been performed to assess the accuracy of combinations of spatial and temporal discretization schemes. Furthermore, the dependence of the results on the stabilization parameters of the spatial discretizations are discussed. Finally the long-time behavior of overshoots and undershoots is investigated
    • ā€¦
    corecore