4,378 research outputs found

    pth moment exponential stability of stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays

    Get PDF
    In this paper, stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are investigated. By using Lyapunov function and the Ito differential formula, some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed delays are established. An example is given to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief conclusion. Methodology and achieved results is to be presented

    Dynamical Behavior of Nonautonomous Stochastic Reaction-Diffusion Neural Network Models

    Get PDF
    This brief investigates nonautonomous stochastic reaction-diffusion neural-network models with S-type distributed delays. First, the existence and uniqueness of mild solution are studied under the Lipschitz condition without the linear growth condition. Due to the existence of a nonautonomous reaction-diffusion term and the infinite dimensional Wiener process, the criteria for the well-posedness of the models are established based on the evolution system theory. Then, the S-type distributed delay, which is an infinite delay, is handled by the truncation method, and sufficient conditions for the global exponential stability are obtained by constructing a simple Lyapunov-Krasovskii functional candidate. Finally, neural-network examples and an illustrative example are given to show the applications of the obtained results.</p

    Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier LtdThis Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov–Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of Jiangsu Education Committee of China (05KJB110154), the NSF of Jiangsu Province of China (BK2006064), and the National Natural Science Foundation of China (10471119)

    On Exponential Periodicity And Stability of Nonlinear Neural Networks With Variable Coefficients And Distributed Delays

    Get PDF
    The exponential periodicity and stability of continuous nonlinear neural networks with variable coefficients and distributed delays are investigated via employing Young inequality technique and Lyapunov method. Some new sufficient conditions ensuring existence and uniqueness of periodic solution for a general class of neural systems are obtained. Without assuming the activation functions are to be bounded, differentiable or strictly increasing. Moreover, the symmetry of the connection matrix is not also necessary. Thus, we generalize and improve some previous works, and they are easy to check and apply in practice.Facultad de Informátic

    On Exponential Periodicity And Stability of Nonlinear Neural Networks With Variable Coefficients And Distributed Delays

    Get PDF
    The exponential periodicity and stability of continuous nonlinear neural networks with variable coefficients and distributed delays are investigated via employing Young inequality technique and Lyapunov method. Some new sufficient conditions ensuring existence and uniqueness of periodic solution for a general class of neural systems are obtained. Without assuming the activation functions are to be bounded, differentiable or strictly increasing. Moreover, the symmetry of the connection matrix is not also necessary. Thus, we generalize and improve some previous works, and they are easy to check and apply in practice.Facultad de Informátic

    Exponential synchronization for reaction-diffusion neural networks with mixed time-varying delays via periodically intermittent control

    Get PDF
    This paper deals with the exponential synchronization problem for reaction-diffusion&nbsp;neural networks with mixed time-varying delays and stochastic disturbance. By using stochastic&nbsp;analysis approaches and constructing a novel Lyapunov–Krasovskii functional, a periodically&nbsp;intermittent controller is first proposed to guarantee the exponential synchronization of reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms of&nbsp;p-norm. The obtained synchronization results are easy to check and improve upon the existing ones.&nbsp;Particularly, the traditional assumptions on control width and time-varying delays are removed in&nbsp;this paper. This paper also presents two illustrative examples and uses simulated results of these&nbsp;examples to show the feasibility and effectiveness of the proposed scheme

    ψ-type stability of reaction–diffusion neural networks with time-varying discrete delays and bounded distributed delays

    Get PDF
    In this paper, the ψ-type stability and robust ψ-type stability for reaction–diffusion neural networks (RDNNs) with Dirichlet boundary conditions, time-varying discrete delays and bounded distributed delays are investigated, respectively. Firstly, we analyze the ψ-type stability and robust ψ-type stability of RDNNs with time-varying discrete delays by means of ψ-type functions combined with some inequality techniques, and put forward several ψ-type stability criteria for the considered networks. Additionally, the models of RDNNs with bounded distributed delays are established and some sufficient conditions to guarantee the ψ-type stability and robust ψ-type stability are given. Lastly, two examples are provided to confirm the effectiveness of the derived results
    corecore