61 research outputs found

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks

    Get PDF
    Based on direct quaternion method, this paper explores the finite-time adaptive synchronization (FAS) of fractional-order delayed quaternion-valued fuzzy neural networks (FODQVFNNs). Firstly, a useful fractional differential inequality is created, which offers an effective way to investigate FAS. Then two novel quaternion-valued adaptive control strategies are designed. By means of our newly proposed inequality, the basic knowledge about fractional calculus, reduction to absurdity as well as several inequality techniques of quaternion and fuzzy logic, several sufficient FAS criteria are derived for FODQVFNNs. Moreover, the settling time of FAS is estimated, which is in connection with the order and initial values of considered systems as well as the controller parameters. Ultimately, the validity of obtained FAS criteria is corroborated by numerical simulations

    Novel fixed-time stabilization of quaternion-valued BAMNNs with disturbances and time-varying coefficients

    Get PDF
    In this paper, with the quaternion number and time-varying coefficients introduced into traditional BAMNNs, the model of quaternion-valued BAMNNs are formulated. For the first time, fixed-time stabilization of time-varying quaternion-valued BAMNNs is investigated. A novel fixed-time control method is adopted, in which the choice of the Lyapunov function is more general than in most previous results. To cope with the noncommutativity of the quaternion multiplication, two different fixed-time control methods are provided, a decomposition method and a non-decomposition method. Furthermore, to reduce the control strength and improve control efficiency, an adaptive fixed-time control strategy is proposed. Lastly, numerical examples are presented to demonstrate the effectiveness of the theoretical results. © 2020 the Author(s), licensee AIMS Press

    Finite-time lag projective synchronization of delayed fractional-order quaternion-valued neural networks with parameter uncertainties

    Get PDF
    This paper discusses a class issue of finite-time lag projective synchronization (FTLPS) of delayed fractional-order quaternion-valued neural networks (FOQVNNs) with parameter uncertainties, which is solved by a non-decomposition method. Firstly, a new delayed FOQVNNs model with uncertain parameters is designed. Secondly, two types of feedback controller and adaptive controller without sign functions are designed in the quaternion domain. Based on the Lyapunov analysis method, the non-decomposition method is applied to replace the decomposition method that requires complex calculations, combined with some quaternion inequality techniques, to accurately estimate the settling time of FTLPS. Finally, the correctness of the obtained theoretical results is testified by a numerical simulation example

    Global exponential synchronization of quaternion-valued memristive neural networks with time delays

    Get PDF
    This paper extends the memristive neural networks (MNNs) to quaternion field, a new class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then established, and the problem of drive-response global synchronization of this type of networks is investigated in this paper. Two cases are taken into consideration: one is with the conventional differential inclusion assumption, the other without. Criteria for the global synchronization of these two cases are achieved respectively by appropriately choosing the Lyapunov functional and applying some inequality techniques. Finally, corresponding simulation examples are presented to demonstrate the correctness of the proposed results derived in this paper

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Exponential synchronization for second-order switched quaternion-valued neural networks with neutral-type and mixed time-varying delays

    Get PDF
    This article focuses on the global exponential synchronization (GES) for second-order state-dependent switched quaternion-valued neural networks (SOSDSQVNNs) with neutral-type and mixed delays. By proposing some new Lyapunov–Krasovskii functionals (LKFs) and adopting some inequalities, several new criteria in the shape of algebraic inequalities are proposed to ensure the GES for the concerned system by using hybrid switched controllers (HSCs). Different from the common reducing order and separation ways, this article presents some new LKFs to straightway discuss the GES of the concerned system based on non-reduction order and nonseparation strategies. Ultimately, an example is provided to validate the effectiveness of the theoretical outcomes

    Finite-time Stability, Dissipativity and Passivity Analysis of Discrete-time Neural Networks Time-varying Delays

    Get PDF
    The neural network time-varying delay was described as the dynamic properties of a neural cell, including neural functional and neural delay differential equations. The differential expression explains the derivative term of current and past state. The objective of this paper obtained the neural network time-varying delay. A delay-dependent condition is provided to ensure the considered discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural networks with time-varying delays for improving. We propose sufficient conditions for discrete-time neural networks with time-varying delays. An effective LMI approach derives by base the appropriate type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying delays in the form of linear matrix inequality (LMI)

    Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

    Get PDF
    summary:In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the nn-dimensional Clifford-valued neural network into 2mn2^mn-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen's integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results

    Global exponential stability conditions for quaternion-valued neural networks with leakage, transmission and distribution delays

    Get PDF
    This paper studies the global exponential stability problem of quaternion-valued neural networks (QVNNs) with leakage, transmission, and distribution delays. To address this issue, a direct method based on system solutions is proposed to ensure the global exponential stability of the considered network models. In addition, this method does not need to construct any Lyapunov-Krasovskii functional, which greatly reduces the amount of computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed results
    corecore