2,650 research outputs found

    Global discretization of continuous attributes as preprocessing for machine learning

    Get PDF
    AbstractReal-life data usually are presented in databases by real numbers. On the other hand, most inductive learning methods require a small number of attribute values. Thus it is necessary to convert input data sets with continuous attributes into input data sets with discrete attributes. Methods of discretization restricted to single continuous attributes will be called local, while methods that simultaneously convert all continuous attributes will be called global. In this paper, a method of transforming any local discretization method into a global one is presented. A global discretization method, based on cluster analysis, is presented and compared experimentally with three known local methods, transformed into global. Experiments include tenfold cross-validation and leaving-one-out methods for ten real-life data sets

    Global discretization of continuous attributes as preprocessing for machine learning

    Get PDF
    Real-life data usually are presented in databases by real numbers. On the other hand, most inductive learning methods require a small number of attribute values. Thus it is necessary to convert input data sets with continuous attributes into input data sets with discrete attributes. Methods of discretization restricted to single continuous attributes will be called local, while methods that simultaneously convert all continuous attributes will be called global. in this paper, a method of transforming any local discretization method into a global one is presented. A global discretization method, based on cluster analysis is presented and compared experimentally with three known local methods, transformed into global. Experiments include tenfold cross-validation and leaving-one-out methods for ten real-life data sets

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    A Global Discretization Approach to Handle Numerical Attributes as Preprocessing

    Get PDF
    Discretization is a common technique to handle numerical attributes in data mining, and it divides continuous values into several intervals by defining multiple thresholds. Decision tree learning algorithms, such as C4.5 and random forests, are able to deal with numerical attributes by applying discretization technique and transforming them into nominal attributes based on one impurity-based criterion, such as information gain or Gini gain. However, there is no doubt that a considerable amount of distinct values are located in the same interval after discretization, through which digital information delivered by the original continuous values are lost. In this thesis, we proposed a global discretization method that can keep the information within the original numerical attributes by expanding them into multiple nominal ones based on each of the candidate cut-point values. The discretized data set, which includes only nominal attributes, evolves from the original data set. We analyzed the problem by applying two decision tree learning algorithms (C4.5 and random forests) respectively to each of the twelve pairs of data sets (original and discretized data sets) and evaluating the performances (prediction accuracy rate) of the obtained classification models in Weka Experimenter. This is followed by two separate Wilcoxon tests (each test for one learning algorithm) to decide whether there is a level of statistical significance among these paired data sets. Results of both tests indicate that there is no clear difference in terms of performances by using the discretized data sets compared to the original ones. But in some cases, the discretized models of both classifiers slightly outperform their paired original models

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    Discretization of Continuous Attributes

    No full text
    7 pagesIn the data mining field, many learning methods -like association rules, Bayesian networks, induction rules (Grzymala-Busse & Stefanowski, 2001)- can handle only discrete attributes. Therefore, before the machine learning process, it is necessary to re-encode each continuous attribute in a discrete attribute constituted by a set of intervals, for example the age attribute can be transformed in two discrete values representing two intervals: less than 18 (a minor) and 18 and more (of age). This process, known as discretization, is an essential task of the data preprocessing, not only because some learning methods do not handle continuous attributes, but also for other important reasons: the data transformed in a set of intervals are more cognitively relevant for a human interpretation (Liu, Hussain, Tan & Dash, 2002); the computation process goes faster with a reduced level of data, particularly when some attributes are suppressed from the representation space of the learning problem if it is impossible to find a relevant cut (Mittal & Cheong, 2002); the discretization can provide non-linear relations -e.g., the infants and the elderly people are more sensitive to illness

    Predicting Pancreatic Cancer Using Support Vector Machine

    Get PDF
    This report presents an approach to predict pancreatic cancer using Support Vector Machine Classification algorithm. The research objective of this project it to predict pancreatic cancer on just genomic, just clinical and combination of genomic and clinical data. We have used real genomic data having 22,763 samples and 154 features per sample. We have also created Synthetic Clinical data having 400 samples and 7 features per sample in order to predict accuracy of just clinical data. To validate the hypothesis, we have combined synthetic clinical data with subset of features from real genomic data. In our results, we observed that prediction accuracy, precision, recall with just genomic data is 80.77%, 20%, 4%. Prediction accuracy, precision, recall with just synthetic clinical data is 93.33%, 95%, 30%. While prediction accuracy, precision, recall for combination of real genomic and synthetic clinical data is 90.83%, 10%, 5%. The combination of real genomic and synthetic clinical data decreased the accuracy since the genomic data is weakly correlated. Thus we conclude that the combination of genomic and clinical data does not improve pancreatic cancer prediction accuracy. A dataset with more significant genomic features might help to predict pancreatic cancer more accurately
    • 

    corecore