19,835 research outputs found

    Defensive alliances in graphs: a survey

    Full text link
    A set SS of vertices of a graph GG is a defensive kk-alliance in GG if every vertex of SS has at least kk more neighbors inside of SS than outside. This is primarily an expository article surveying the principal known results on defensive alliances in graph. Its seven sections are: Introduction, Computational complexity and realizability, Defensive kk-alliance number, Boundary defensive kk-alliances, Defensive alliances in Cartesian product graphs, Partitioning a graph into defensive kk-alliances, and Defensive kk-alliance free sets.Comment: 25 page

    Offensive alliances in cubic graphs

    Full text link
    An offensive alliance in a graph Γ=(V,E)\Gamma=(V,E) is a set of vertices S⊂VS\subset V where for every vertex vv in its boundary it holds that the majority of vertices in vv's closed neighborhood are in SS. In the case of strong offensive alliance, strict majority is required. An alliance SS is called global if it affects every vertex in V\SV\backslash S, that is, SS is a dominating set of Γ\Gamma. The global offensive alliance number γo(Γ)\gamma_o(\Gamma) (respectively, global strong offensive alliance number γo^(Γ)\gamma_{\hat{o}}(\Gamma)) is the minimum cardinality of a global offensive (respectively, global strong offensive) alliance in Γ\Gamma. If Γ\Gamma has global independent offensive alliances, then the \emph{global independent offensive alliance number} γi(Γ)\gamma_i(\Gamma) is the minimum cardinality among all independent global offensive alliances of Γ\Gamma. In this paper we study mathematical properties of the global (strong) alliance number of cubic graphs. For instance, we show that for all connected cubic graph of order nn, 2n5≤γi(Γ)≤n2≤γo^(Γ)≤3n4≤γo^(L(Γ))=γo(L(Γ))≤n,\frac{2n}{5}\le \gamma_i(\Gamma)\le \frac{n}{2}\le \gamma_{\hat{o}}(\Gamma)\le \frac{3n}{4} \le \gamma_{\hat{o}}({\cal L}(\Gamma))=\gamma_{o}({\cal L}(\Gamma))\le n, where L(Γ){\cal L}(\Gamma) denotes the line graph of Γ\Gamma. All the above bounds are tight

    Global defensive k-alliances in graphs

    Get PDF
    Let Γ=(V,E)\Gamma=(V,E) be a simple graph. For a nonempty set X⊆VX\subseteq V, and a vertex v∈Vv\in V, δX(v)\delta_{X}(v) denotes the number of neighbors vv has in XX. A nonempty set S⊆VS\subseteq V is a \emph{defensive kk-alliance} in Γ=(V,E)\Gamma=(V,E) if δS(v)≥δSˉ(v)+k,\delta_S(v)\ge \delta_{\bar{S}}(v)+k, ∀v∈S.\forall v\in S. A defensive kk-alliance SS is called \emph{global} if it forms a dominating set. The \emph{global defensive kk-alliance number} of Γ\Gamma, denoted by γka(Γ)\gamma_{k}^{a}(\Gamma), is the minimum cardinality of a defensive kk-alliance in Γ\Gamma. We study the mathematical properties of γka(Γ)\gamma_{k}^{a}(\Gamma)

    Alliance free and alliance cover sets

    Full text link
    A \emph{defensive} (\emph{offensive}) kk-\emph{alliance} in Γ=(V,E)\Gamma=(V,E) is a set S⊆VS\subseteq V such that every vv in SS (in the boundary of SS) has at least kk more neighbors in SS than it has in V∖SV\setminus S. A set X⊆VX\subseteq V is \emph{defensive} (\emph{offensive}) kk-\emph{alliance free,} if for all defensive (offensive) kk-alliance SS, S∖X≠∅S\setminus X\neq\emptyset, i.e., XX does not contain any defensive (offensive) kk-alliance as a subset. A set Y⊆VY \subseteq V is a \emph{defensive} (\emph{offensive}) kk-\emph{alliance cover}, if for all defensive (offensive) kk-alliance SS, S∩Y≠∅S\cap Y\neq\emptyset, i.e., YY contains at least one vertex from each defensive (offensive) kk-alliance of Γ\Gamma. In this paper we show several mathematical properties of defensive (offensive) kk-alliance free sets and defensive (offensive) kk-alliance cover sets, including tight bounds on the cardinality of defensive (offensive) kk-alliance free (cover) sets

    Open k-monopolies in graphs: complexity and related concepts

    Get PDF
    Closed monopolies in graphs have a quite long range of applications in several problems related to overcoming failures, since they frequently have some common approaches around the notion of majorities, for instance to consensus problems, diagnosis problems or voting systems. We introduce here open kk-monopolies in graphs which are closely related to different parameters in graphs. Given a graph G=(V,E)G=(V,E) and X⊆VX\subseteq V, if δX(v)\delta_X(v) is the number of neighbors vv has in XX, kk is an integer and tt is a positive integer, then we establish in this article a connection between the following three concepts: - Given a nonempty set M⊆VM\subseteq V a vertex vv of GG is said to be kk-controlled by MM if δM(v)≥δV(v)2+k\delta_M(v)\ge \frac{\delta_V(v)}{2}+k. The set MM is called an open kk-monopoly for GG if it kk-controls every vertex vv of GG. - A function f:V→{−1,1}f: V\rightarrow \{-1,1\} is called a signed total tt-dominating function for GG if f(N(v))=∑v∈N(v)f(v)≥tf(N(v))=\sum_{v\in N(v)}f(v)\geq t for all v∈Vv\in V. - A nonempty set S⊆VS\subseteq V is a global (defensive and offensive) kk-alliance in GG if δS(v)≥δV−S(v)+k\delta_S(v)\ge \delta_{V-S}(v)+k holds for every v∈Vv\in V. In this article we prove that the problem of computing the minimum cardinality of an open 00-monopoly in a graph is NP-complete even restricted to bipartite or chordal graphs. In addition we present some general bounds for the minimum cardinality of open kk-monopolies and we derive some exact values.Comment: 18 pages, Discrete Mathematics & Theoretical Computer Science (2016
    • …
    corecore